X



(情報科学)技術的特異点と科学・技術等 1 (ナノテク) [転載禁止]©2ch.net
0001オーバーテクナナシー
垢版 |
2015/03/25(水) 03:09:59.43ID:JLiLnBxr
※このスレは、下記の本家スレから分かれた分家スレです。転載に関する規定は本家に準じます。

■現在の本家スレ
(強いAI)技術的特異点/シンギュラリティ(世界加速) 13 [転載禁止]c2ch.net
http://wc2014.2ch.net/test/read.cgi/future/1426647717/


本家スレの話題のうち、科学・技術系で『専門的な』話題を特に扱います。

スレ成立のきっかけ
・技術的特異点の関わる分野は非常に幅広く、浅い部分から深い部分までレベルも様々で、多様な人が集まっている
・上記を前提として、科学・技術系で専門的な内容に集中しやすいように、ノイズ(特に不毛な論争)を減らしたい
・これにより、興味がある者同士の意思疎通困難性、過去ログ参照の困難性などが解消される

ただし性質上、本家との区分は厳密には困難です。
むしろ同じ内容が扱われても構いません。
本家は雑談寄り、ここではより専門色を強く、とご理解下さい。


■姉妹スレ
(AIとBI)技術的特異点と経済・社会等 1 (天国or地獄) [転載禁止]©2ch.net
http://wc2014.2ch.net/test/read.cgi/future/1427004849/

■関連スレ
人工知能
http://wc2014.2ch.net/test/read.cgi/future/1286353655/
0652651
垢版 |
2017/02/11(土) 12:03:13.50ID:Xj0b950+
HTM リージョンのセルはこの特徴を利用している。各セルの樹状突起セグメントは
同じセル内の他のセルへの接続関係の集合を持つ。樹状突起セグメントは
ある時点でのネットワークの状態を理解する ry ため、これらの接続を形成している。
周囲のアクティブなセルは数百から数千あるかも知れないが、
ry が接続しなければならないのはこのうちの 15 から 20 程度に過ぎない。
ry 15 個のセルがアクティブと分かれば、その大きなパターンが発生 ry ほぼ確信できる。
このテクニックを「サブサンプリング」と呼び、HTM アルゴリズム全体を通じて利用している。

各セルは多くの異なる分散パターンに関与し、また多くの異なるシーケンスに関与 ry
。ある特定のセルは数十から数百の時間的遷移に関与しているかも ry
。従って各セルは一つではなく、いくつかの樹状突起セグメントを持つ。
ry セルが理解したいアクティビティの各パターンごとに一つの樹状突起セグメントを持つこ
0653661
垢版 |
2017/02/12(日) 14:29:02.49ID:BZYpOz1d
Page 38

とが望ましい。しかし ry 樹状突起セグメントはいくつかの完全に異なるパターンに関して
接続を学習することができ、それでもうまく行く。
例えば、一つのセグメントが 4 つの異なるパターンのそれぞれについて 20 ry 都合 80 個
の接続を持つとする。そして、これらの接続のうち任意の 15 個がアクティブ
なときに樹状突起セグメントがアクティブとなるようにしきい値を設定する。
これにより誤りが発生する可能性が生じる。
異なるパターンが混在することで、 ry 15 個のしきい値に到達する可能性がある。
しかしながら、表現の疎な性質により、このような誤りは非常に起こりにくい。

では、10 個から 20 個の樹状突起セグメントを持つセルと数千個のシナプスが
どのようにして数百種類のセルのアクティブ状態を理解するのかを見ていこう。

時間プーリングの詳細

ry 行われるステップを数え上げていく。
空間プーリングを終えてフィード・フォワード入力を表現するアクティブなカラムの集合
が得られたところから始める。
0654652
垢版 |
2017/02/12(日) 14:30:37.18ID:BZYpOz1d
1) それぞれのアクティブなカラム ry の中のセルで予測状態のものを調べ、
アクティブにする。すべてのセルが予測状態でないなら、カラム中のすべての
セルをアクティブにする。結果として得られたアクティブなセルの集合は、
以前の入力の文脈の下での入力表現である。

2) リージョンのすべてのセルの各樹状突起セグメントについて、アクティブなセルに
接続されている接続状態のシナプスの数 ry 数がしきい値を超えていれば、
その樹状突起セグメントをアクティブとして印を付ける。
アクティブな樹状突起セグメントを持つセルを、
それがフィード・フォワード入力によって既にアクティブでない限り、予測状態にする。
アクティブな樹状突起を持たず、
フィード・フォワード入力によりアクティブになっていないセルは、非アクティブにする。
以上により、予測状態のセル全体がそのリージョンの予測となる。

3) 樹状突起セグメントがアクティブになったとき、そのセグメント上の
すべてのシナプスの永続値を更新する。
その ry セグメントのすべてのシナプス候補について、
アクティブなセルに接続しているシナプスの永続値を
増加させ、非アクティブなセルに接続しているシナプスの永続値を減少させる。
シナプスの永続値に対するこれらの変更に一時的と印を付ける。
これはセグメントをアクティブにし、従ってまた予測をするほど
既に十分に訓練されたシナプスを更新する。
しかしながら、可能であればさらに時間をさかのぼって
0656653
垢版 |
2017/02/15(水) 22:26:32.55ID:4UMkv2wE
Page 39

予測ができるように常に拡張したい。
このため、同じセルの二番目の樹状突起セグメントを取り上げ、訓練する。
二番目のセグメントとして、
以前の時刻ステップのシナプスの状態に最もマッチするものを一つ選択する。
このセグメントに対して、以前の時刻ステップのシステムの状態を用いて、
アクティブなセルに接続しているシナプスの永続値を増加させ、
非アクティブなセルに接続しているシナプスの永続値を減少させる。
シナプスの永続値に対するこれらの変更に一時的と印を付ける。

4) あるセルがフィード・フォワード入力によって予測状態からアクティブ状態41に
変化したときはいつも、そのセルに関連付けられているすべてのシナプス候補の
「一時的」の印を削除する。従ってフィード・フォワードによってセルがアクティブ化
したことを正しく予測したときだけ、シナプスの永続値を更新する。

5) セルがアクティブ状態から非アクティブ状態に変化したとき、
このセルのすべてのシナプス候補について一時的な永続値の変更を元に戻す。
フィード・フォワードによってセルがアクティブ化したこと
を間違って予測したときはシナプスの永続値を強化したくないため。

フィード・フォワードによってアクティブになったセルだけを処理するのは
リージョンの内部だけであって、それ以外では予測はさらなる予測を引き起こす ry
。しかし(フィード・フォワードと予測の)すべてのアクティブなセルは
リージョンの出力となり、階層構造の次のリージョンへと引き継がれる。
0657656
垢版 |
2017/02/15(水) 22:27:09.36ID:4UMkv2wE
一次と可変長42のシーケンスと予測

ry

一つのカラムに対するセルの数を増 ry 減 ry の効果 ry ?
特に、1カラムに1つのセルしかないとき ry ?

以前用いた例では、カラム当たり4セルのアクティブなカラムが 100 個の場合、
入力の表現は 4100 通りの異なるコード化が可能 ry
。従って、同じ入力が様々な文脈の中で出現しても混乱しない ry
。例えば、もし入力パターンが単語を表すなら、リージョンは
同じ単語が何度も使われる多くの文章を混乱することなく

41 原文は“inactive to active”となっているが、web 上の forum で
“predictive state to active state”の間違いだったとの訂正があった。
(2010/12/14 Sabutai: title “Cortical Algorithms document: praise and suggestions”)
42 “first order” と “variable order”。前者は一つだけの長さのシーケンスと予測、
後者は任意の長さのシーケンスと予測。
0660656
垢版 |
2017/02/17(金) 13:48:09.67ID:pF3vP0RD
Page 40

記憶できる。「犬」のような単語が異なる文脈の中でユニークな表現を持つ ry
。この能力により HTM リージョンは可変長の予測 ry

可変長予測は現在起きていることだけではなく、可変の長さの過去の文脈に基づいて予測する。
HTM リージョンは可変長の記憶である。

カラム当たり 5 セルに増やすと、 ry
可能なコード化の数は 5100 に増加し、4100 よりずっと大きくなる。
しかし、 ry 多くの現実的な問題においてこの容量の増加はあまり役に立たない ry

しかしながら、 ry 少なくすると、大きな違いが生まれる。

もしカラム当たり1セルまでになると、文脈の中で表現する能力を失 ry
リージョンへの入力は、以前の活動に関係なく常に同じ予測を引き起 ry
。カラム当たり1セルの場合、HTM リージョンの記憶は一次記憶となり、
予測は現在の入力だけに基づ ry

一次予測は脳が解くことのできるある種の問題 ―静的空間推論― に理想的である。
ry 目が後を追うには短かすぎる時間であっても ry
聞く ry 理解するには常にパターンのシーケンスを聞く必要がある。
視覚も普通はそれに似ていて、視覚的イメージの流れを処理する必要がある。
しかしある条件下では、一瞬 ry
0661660
垢版 |
2017/02/17(金) 13:49:24.30ID:pF3vP0RD
時間的理解と静的理解とでは、異なる推論メカニズム ry
一方は可変長の文脈に基づいてパターンのシーケンスを理解し、予測をする必要がある。
他方は時間的文脈を使わずに静的な空間的パターンを理解する必要がある。
カラム当たり複数のセルを持つ HTM リージョンは時間に基づくシーケンスを理解
するのに理想的であり、カラム当たり1セルの HTM リージョンは空間的パターンを理解
するのに理想的である。
Numenta では、カラム当たり1セルのリージョンを視覚問題に適用した実験を数多く実施 ry
重要な概念だけ述べる。

HTM リージョンにイメージを入力すると、リージョン内のカラムは画素の共通の空間的配列
の表現を学習する。学習するパターンの種類は新皮質の V1 野
(生物学で広く研究されている新皮質のリージョン)で観察されるものと似ていて、
概ね、異なる角度の線と角である。動画像 ry 、これらの基本的な形の遷移を学習する。
例えばある箇所に垂直な線があって、左又は右に移動した垂直な線がそれに続く ry
よく観察されるパターンの遷移は HTM リージョンで記憶される。
0662620
垢版 |
2017/02/17(金) 14:23:01.30ID:pF3vP0RD
>> http://rio2016.2ch.net/test/read.cgi/future/1487129635/363-364
>  ・唯一無二派
>  ・客観派
自動憑依 余地

>    ・脳拡張派
連続度 ⇔ 工事による影響
http://wc2014.2ch.net/test/read.cgi/future/1444213055/444# haamonii

>  ・電脳派
粒度 ( 分解能 ) : 正確性


http://rio2016.2ch.net/test/read.cgi/future/1473812514/411# SaitouSensei BCI Habu
> 16 : yamaguti~kasi 2017/01/04(水) 13:35:45.21 ID:stEDHEtr
> http://rio2016.2ch.net/test/read.cgi/future/1482030012/794# TinouZoufuku-BCI
http://rio2016.2ch.net/test/read.cgi/future/1479349196/772# JinkakuYuugou
>http://rio2016.2ch.net/test/read.cgi/future/1473812514/441# BCI

ttp://rio2016.2ch.net/test/read.cgi/future/1427220599/569
p://rio2016.2ch.net/test/read.cgi/future/1486571513/377
0663異次元騎士カズマ
垢版 |
2017/02/17(金) 19:09:14.93ID:XMFDn/Yv
俺は敵の海賊島に潜入し,船長の部屋に乗り込んだ。誰もいない。
くそっ,ヤツはどこだっ!
とそこで,ベッドの上に鎖で縛り付けられている黒人娘を見つけた。
彼女は叫んだ「カズマ! 来てくれたの?」
俺にはこんな丸顔の黒人女は知り合いにいないのだが……ってマノン?

そんな馬鹿な,彼女は卵形の顔をしていたし,薔薇色の肌だった。
そして二重で勝気なグリーンの瞳を持っているんだ。
しかしそれは間違いなくマノンだった。
顔と肌はボコボコに殴られ腫れて黒ずんでいて,片目はつぶれている。
左脚は膝から逆方向にまがっており,歯も1本も残っていない。

「ごめんね,カズマ。分からない? そうよね,私ここに連れて来られてから
一度もお風呂に入っていないし,汚くて分からないわよね。

あれからね,私ずっと何度も海賊たちに抱かれたわ。
でもね,私その相手をカズマだと思うようにしたの,だってカズマなら
殴られても何をされても嫌じゃない。耐えられるから。許してくれる?

私,鏡すら見てないのよ。
前に思い切り抵抗したとき殴られて以来,目も良く見えなくて……。
ねぇ,私醜くなった?」

俺は彼女を抱きしめ,唇を吸った

「いや,マノンは綺麗なままだよ」
0664異次元騎士カズマ
垢版 |
2017/02/18(土) 08:55:51.61ID:Uf5aHGu8
工知能で自我・魂が作れるか [無断転載禁止]©2ch.net
202 : 異次元騎士カズマ2017/02/17(金) 19:10:13.24 ID:XMFDn/Yv
俺は敵の海賊島に潜入し,船長の部屋に乗り込んだ。誰もいない。
くそっ,ヤツはどこだっ!
とそこで,ベッドの上に鎖で縛り付けられている黒人娘を見つけた。
彼女は叫んだ「カズマ! 来てくれたの?」
俺にはこんな丸顔の黒人女は知り合いにいないのだが……ってマノン?

そんな馬鹿な,彼女は卵形の顔をしていたし,薔薇色の肌だった。
そして二重で勝気なグリーンの瞳を持っているんだ。
しかしそれは間違いなくマノンだった。
顔と肌はボコボコに殴られ腫れて黒ずんでいて,片目はつぶれている。
左脚は膝から逆方向にまがっており,歯も1本も残っていない。

「ごめんね,カズマ。分からない? そうよね,私ここに連れて来られてから
一度もお風呂に入っていないし,汚くて分からないわよね。

あれからね,私ずっと何度も海賊たちに抱かれたわ。
でもね,私その相手をカズマだと思うようにしたの,だってカズマなら
殴られても何をされても嫌じゃない。耐えられるから。許してくれる?

私,鏡すら見てないのよ。
前に思い切り抵抗したとき殴られて以来,目も良く見えなくて……。
ねぇ,私醜くなった?」

俺は彼女を抱きしめ,唇を吸った

「いや,マノンは綺麗なままだよ」
0665660
垢版 |
2017/02/19(日) 00:40:30.29ID:Iy/nas+o
Page 41

もしリージョンへの入力画像が、垂直な線が右に移動するものだったら ry ?
カラム当たり1セルしかなかったら、線が次に左又は右に現れること43を予測できる ry
。線が過去にどこにあったか知っているという文脈を使うことができないため ry
移動していることを知ることはできない。
このようなカラム当たり1セルのものは、新皮質の「複雑型細胞」44のように振舞う ry
。そのようなセルの予測出力は、 ry 動いていようがいまいが
異なる位置にある視覚的な線に対してアクティブになるだろう。
このようなリージョンは異なるイメージを区別する能力を保持する一方で、
平行移動や大きさの変化に対して安定 ry
。このような振る舞いは、空間的不変性(同じパターンの異なる見方 ry ) ry

もし同じ実験をカラム当たり複数のセルを持つ HTM リージョンに対して行えば、
そのセルが新皮質の「方位選択性複雑型細胞」45のように振舞う ry
。セルの予測出力は左に移動する線や右 ry 線に対してアク ry になるが、両方に対しては ry
0666665
垢版 |
2017/02/19(日) 00:41:39.93ID:Iy/nas+o
これらをまとめ ry 仮説 ry
新皮質は一次と可変長の両方の推論及び予測 ry
。新皮質の各リージョンには 4 又は 5 層のセルがある。
ry それらはすべてカラム単位で応答する性質 ry 水平方向に大きな接続性 ry
。新皮質のセルの層は ry HTM の推論と学習に似たことを実行しているのではないか ry
。異なる層のセルは異なる役割 ry 。例えば解剖学によれば
第 6 層は階層構造のフィードバックを形成し、第 5 層は運動の動作に関わっている。
。異なる層のセルは異なる役割 ry
解剖学 ry 6 層は階層構造のフィードバックを形成し、第 5 層は運動の動作 ry
。セルの 2 つの主要なフィード・フォワード層は第 4 層と第 3 層である。
ry 4 層のセルが独立に、即ちカラムの中で1セルだけが動作するのに対して、
第 3 層のセルはカラムの中で複数のセルが動作 ry
。よってセンサ入力に近い新皮質のリージョンは一次記憶と可変長記憶の両方を持つ。
一次シーケンス記憶(だいたい第4層のニューロンに対応する)は空間的に不変の表現 ry
。可変長シーケンス記憶(だいだい第 3 ry )は動画像の推論と予測に役立つ。

まとめ ry 章で述べたようなアルゴリズムは新皮質のニューロンのすべての層 ry 仮説 ry
。新皮質の層の詳細は大きく違っていて、
フィード・フォワードとフィードバック、注意46、運動動作47に関する異なる役割を演じ

43 「移動する」ことは予測できないが、隣の位置に「出現する」ことは予測 ry
44 complex cell
45 directionally-tuned complex cell
46 attention
47 motor behavior
0667665
垢版 |
2017/02/20(月) 00:16:09.76ID:PjnuggmX
Page 42

ている。センサ入力に近いリージョンでは、
一次記憶を実行するニューロンの層が空間的不変性に有利であるため役に立つ。

ry 一次(カラム当たり1セル)の HTM リージョンを画像認識問題に適用する実験 ry
可変長(カラム当たり複数セル)の ry に可変長のシーケンスを理解・予測させる実験 ry
。将来 ry 一つのリージョンに混在させ、他の目的にもアルゴリズムを拡張 ry
しかしながら、一つの層と等価なカラム当たり複数セルの構造が、
単体であれ複数階層であれ、多くの興味深い問題を取り扱いうる ry
0669667
垢版 |
2017/02/26(日) 02:06:24.81ID:vIzrnxYS
Page 43

第3章: 空間プーリングの実装と疑似コード

ry プーリング関数48の最初の実装の疑似コード ry
。このコードの入力は、センサー・データ又は前のレベルからのバイナリ配列である。
このコードは activeColumns(t) を計算する。activeColumns(t) は
時刻 t において、フィード・フォワード入力に対して選択されたカラムのリスト ry
時間プーリング関数の入力 ry activeColumns(t) は空間プーリング関数の出力 ry
0670669
垢版 |
2017/02/26(日) 02:07:54.96ID:vIzrnxYS
疑似コードは3つのフェーズ ry 順に実行 ry

ry 1: 各カラムについて、現在の入力のオーバラップを計算する。
ry 2: 抑制の後に勝者となったカラムを計算する。
ry 3: シナプスの永続値と内部変数を更新する。

空間プーリングの学習はオンライン49で行われるが、
フェーズ 3 を単にスキップすることで学習をしないようにすることもできる。

以下、3つのフェーズのそれぞれについて疑似コードを示す。
ry データ構造や補助関数は本章の最後に示す。

初期化
最初の入力を受け取る前に、各カラムの最初のシナプス候補のリストを計算して
リージョンを初期化する。
これは入力配列の中からランダムに選択された入力位置のリストで構成される。
各入力はシナプスで表現され、ランダムな永続値が割り当てられる。
ry 永続値は二つの条件を満たす ry
。第一に、その値は connectedPerm
(シナプスが「接続している」と判定される最小の永続値)の前後の狭い範囲 ry
。これにより、訓練を少ない回数繰り返しただけで、 ry 接続(ないし切断) ry
。第二に、各カラムは入力リージョン上で自然な中心位置があり、
永続値 ry バイアス ry 。(中心付近ではより高い値 ry )

48 spatial pooler function
49 online。推論の計算と学習の計算を分離せずに、同時 ry
0671669
垢版 |
2017/02/26(日) 17:47:14.84ID:vIzrnxYS
Page 44

フェーズ 1: オーバラップ
ry 与えられた入力ベクトルについて、そのベクトルと各カラムのオーバラップを計算する。
ry オーバラップは、アクティブな入力と接続されたシナプスの数 ry にブースト値を掛け ry
。もしこの値がminOverlap を下回 ry 0 ry

1. for c in columns
2.
3.   overlap(c) = 0
4.   for s in connectedSynapses(c)
5.     overlap(c) = overlap(c) + input(t, s.sourceInput)
6.
7.   if overlap(c) < minOverlap then
8.     overlap(c) = 0
9.   else
10.     overlap(c) = overlap(c) * boost(c)
0672671
垢版 |
2017/02/26(日) 17:49:20.84ID:vIzrnxYS
フェーズ 2: 抑制
ry 抑制の後に勝者となったカラムを計算する。
desiredLocalActivity は勝者となるカラムの数を制御するパラメータである。
例えば、 desiredLocalActivity を 10 ry
抑制半径 ry においてカラムのオーバラップ値が高い順に 10 位以内のカラムが勝者 ry

11. for c in columns
12.
13.   minLocalActivity = kthScore(neighbors(c), desiredLocalActivity)
14.
15.   if overlap(c) > 0 and overlap(c) minLocalActivity then
16.     activeColumns(t).append(c)
17.

フェーズ 3: 学習
ry 学習を実行 ry シナプスの永続値は必要に応じて更新され、
ブースト値と抑制半径を更新する。
0673671
垢版 |
2017/02/27(月) 23:47:53.65ID:2got1qbV
Page 45

主要な学習規則は 20-26 行 ry 。勝者となったカラムのそれぞれについて、
もしあるシナプスがアクティブであればその永続値をインクリンメントし、
その他の場合はデクリメントする。永続値は 0 から 1 の範囲 ry

28-36 行目ではブーストを実装している。
カラムが接続を学習するための二つの独立したブースト機構がある。
あるカラムがあまり勝者となっていない(activeDutyCycleで観測される)とき、
そのブースト値をインクリメントする(30-32 行目)。
一方、あるカラムのシナプスがどの入力ともあまりオーバラップしない50
(overlapDutyCycle で観測される)とき、その永続値がブーストされる(34-36 行目)。
ノート:学習モードがオフになると、ブースト値は固定される。

フェーズ 3 の最後に、抑制半径を再計算する(38 行目)。
0674673
垢版 |
2017/02/27(月) 23:48:48.59ID:2got1qbV
18. for c in activeColumns(t)
19.
20.   for s in potentialSynapses(c)
21.     if active(s) then
22.       s.permanence += permanenceInc
23.       s.permanence = min(1.0, s.permanence)
24.     else
25.       s.permanence -= permanenceDec
26.       s.permanence = max(0.0, s.permanence)
27.
28. for c in columns:
29.
30.   minDutyCycle(c) = 0.01 * maxDutyCycle(neighbors(c))
31.   activeDutyCycle(c) = updateActiveDutyCycle(c)
32.   boost(c) = boostFunction(activeDutyCycle(c), minDutyCycle(c))
33.
34.   overlapDutyCycle(c) = updateOverlapDutyCycle(c)
35.   if overlapDutyCycle(c) < minDutyCycle(c) then
36.     increasePermanences(c, 0.1*connectedPerm)
37.
38. inhibitionRadius = averageReceptiveFieldSize()
39.

50 オーバラップ値が小さい
0675673
垢版 |
2017/03/01(水) 06:47:38.78ID:3+1CchsD
Page 46

データ構造と補助関数

以下の変数とデータ構造が疑似コードで ry

columns
すべてのカラムのリスト
input(t,j)
時刻t におけるこのレベルへの入力。j 番目の入力がオンのとき、input(t, j) は1である。
overlap(c)
ある入力パターンに対する、カラムc の空間プーリング・オーバラップ
activeColumns(t)
フィード・フォワード入力により勝者となったカラムの添え字のリスト
desiredLocalActivity
抑制ステップの後に勝者となるカラムの数を制御するパラメータ
inhibitionRadius
カラムに接続された受容野51のサイズの平均値
neighbors(c)
カラムc から inhibitionRadius の範囲内にあるすべてのカラムのリスト
minOverlap
抑制ステップで処理対象となるべきカラムのアクティブな入力の最小の数52
boost(c)
学習のときに計算される、カラムc のブースト値。
ry アクティブでないカラムのオーバラップ値を増加させる ry
0676675
垢版 |
2017/03/01(水) 06:48:28.73ID:3+1CchsD
synapse
シナプスを表すデータ構造。永続値と接続元の入力の添え字からなる。
connectedPerm
もしあるシナプスの永続値がこの値よりも大きければ、接続していると判定される
potentialSynapses(c)
シナプス候補とその永続値のリスト
connectedSynapses(c)
potentialSynapses(c) の部分集合で、永続値がconnectedPerm以上のものからなる。
これらは現在カラムc に接続されているフィード・フォワード入力である。
permanenceInc
学習時にシナプスの永続値を増加させる増分値
permanenceDec
減少値

51 巻末の用語の説明参照
52 あるカラムへのアクティブな入力がこの数以上であれば、抑制ステップで処理対象となる。
0685620
垢版 |
2017/03/28(火) 00:01:48.41ID:yp3ixXqM
>>567
> 一つの HTM リージョンは学習の能力が限定 ry どれだけのメモリ ry 入力が ry 複雑 ry に応じて ry メモリが削減 ry より単純 ry
0686620
垢版 |
2017/03/29(水) 01:15:27.80ID:oL56SRZT
強い AI ( AL ) 簡易版実装用資料 ( ほぼ網羅 ) >>680 ( >>552 >>529 引込現象 )

>205 >135 : YAMAGUTIseisei 20161009 >繰返しになるが既にできている ( 自分だけの問題でないので全てを詳らかにできないが自分の師匠がとうの昔に簡易
0687620
垢版 |
2017/04/09(日) 08:19:51.34ID:XXlcdpGX
>>630 #60#62-64
>パルス ry 頻度が重要 ry よってセルの出力はスカラー値と見 ry 学習はシナプスのウェイトを調整 ry 非線形 ry このタイプの人工ニューロン ry 有益 ry しかし ry 複雑さを捉えておらず ry もっと精巧 ry 必要
>68 spike ry 尖った波形

>樹状突起セグメントは、以前 ry 同時にアクティブ ry セルへの接続 ry で ry 記憶する。そのセグメントは、以前にフィード・フォワード入力によってアクティブ ry を記憶

> HTM ry シナプスは二値の重み ry スカラー値にすることを妨げるものは何も

>Dendrites この本は樹状突起に関するあらゆる ry 16 章では HTM ry 樹状突起セグメントの非線形な性質
0689620
垢版 |
2017/05/04(木) 12:15:43.63ID:RvZVSAKV
>>688 >>680-686 >>417 >>633 TaihuLight SW26010 ( Jian Zhang 先生 ) 電子頭脳的設計
http://m.pc.watch.impress.co.jp/docs/column/kaigai/1056229.html
現行アプリ的直線性能の度外視傾向 ( 戦艦度外視 航空機設計 ) ? TRONCHIP 系美麗設計 太極美 陰陽美
http://rio2016.2ch.net/test/read.cgi/future/1489922543/44-50# TRONCHIP 32bitARM
http://rio2016.2ch.net/test/read.cgi/future/1472305818/606#728-730#754-759#576-529# Cell SW26010
http://rio2016.2ch.net/test/read.cgi/future/1478753976/596# Rousi NanbuSensei ONOyouko
老子 : 萬物抱陰而負陽 冲氣以為和 陰陽二氣交互作用而生成和諧 ( 南部陽一郎先生:自発的対称性の破れ オノ・ヨーコ氏:傾き )
0695620
垢版 |
2017/07/02(日) 21:34:44.89ID:ZKt2tQ+I
>>688 解釈循環収束
>>483 >TRONCHIP 根源要素透過可視大深度再帰自律実身仮身浸透細粒度動的鏡像 JIT/DSL
>>484 >幻影実在大深度再帰自律オブジェクト 素因数分解 素韻枢分解 素因枢分解
0697620
垢版 |
2017/08/20(日) 23:26:30.43ID:S+NGnK8E?2BP(0)

量子アニー ry ( ( 超細密 ) アナログアレイ ( D- ry : AAP 系ビット修飾 ) )
0700オーバーテクナナシー
垢版 |
2017/09/18(月) 11:03:40.38ID:JrqwFzjk
世の中も休日だからといって
安心して誤魔化すのはやめよう

ベーシックインカム、労働も格差もない社会、
生きてるうちに実現しないおとぎ話に
希望を抱くのはやめよう

現実を直視しよう
そして勇気を出して外に出よう

未来は誰かが与えてくれるものではない
自ら築き上げるものだから
0701オーバーテクナナシー
垢版 |
2017/09/18(月) 12:58:22.14ID:AAMlS105
この世界が現実
冷淡な言い方かもしれないけど
早く目を覚まそう

つまらない言い訳はやめよう
理由探しはやめよう
できるわけないと逃げるのはやめよう

すべてはあなた次第
0702オーバーテクナナシー
垢版 |
2017/09/18(月) 17:10:17.00ID:RF742OFf
>>701
なんかあんたの方が心配
0704ウルトラスーパーハイパーマネタイズドルルモンバーストモード
垢版 |
2017/09/22(金) 01:38:14.10ID:As647O9y
プラズモンの勝ち
プラズモンの勝利
プラズモンの大勝利
プラズモンの完全勝利
プラズモンの圧勝
プラズモンの楽勝
プラズモンの優勝
プラズモンの連勝
プラズモンの必勝
プラズモンの完勝
プラズモンの全勝
プラズモンの奇勝
プラズモンは強剛だよ
プラズモンは強豪だよ
プラズモンは強烈だよ
プラズモンは強靭だよ
プラズモンは強者だよ
プラズモンは強大だよ
プラズモンは強力だよ
プラズモンは強いよ
0705オーバーテクナナシー
垢版 |
2017/09/23(土) 03:20:00.79ID:YQUjvFif
(ナノテク)というか(財テク?)情報商材はマネタイズ?。科学・技術系で『専門的な』のだろうか?
0708696
垢版 |
2017/11/19(日) 23:57:37.73ID:rqlrQQyU?2BP(0)

>>696 山本先生方式でした失礼 ( イジング シナプス ニューロン )
0710709
垢版 |
2017/12/03(日) 23:40:17.91ID:KS3QBssW
>>709 p://rio2016.5ch.net/test/read.cgi/future/1511144695/236#190#187#246-248#1511446159/836##1511446164/204# 慎重派ご趣旨
0712620
垢版 |
2017/12/17(日) 23:23:39.99ID://DuCUBG
>>710 ../1512541342/32#114#377##530
0713ウルトラスーパーハイパーイニシエータードルルモンバーストモード
垢版 |
2017/12/24(日) 05:47:24.73ID:R+o9zS/0
オンパモンの勝ち
オンパモンの勝利
オンパモンの大勝利
オンパモンの完全勝利
オンパモンの圧勝
オンパモンの楽勝
オンパモンの優勝
オンパモンの連勝
オンパモンの制勝
オンパモンの戦勝
オンパモンの必勝
オンパモンの完勝
オンパモンの全勝
オンパモンの奇勝
オンパモンは強いよ
オンパモンは強力だよ
オンパモンは強大だよ
オンパモンは強者だよ
オンパモンは強烈だよ
オンパモンは強靭だよ
オンパモンは強豪だよ
オンパモンは強剛だよ
0714オーバーテクナナシー
垢版 |
2017/12/24(日) 08:36:51.85ID:hjyZKgB0
参考までに、未来技術というか自分で簡単にPCで収入を得られる方法など
⇒ 『山中のムロロモノス』 というブログで見ることができるらしいです。

グーグル等で検索⇒『山中のムロロモノス』

SCHX4VEABD
0715620
垢版 |
2017/12/24(日) 23:37:48.69ID:pShD9eSS
>>712
12560177/769 大意 通説
0716711
垢版 |
2018/01/07(日) 23:32:05.37ID:A+UithjA
>>709 /1511144695/28#P=3
>2018年 ry 、光パルスの数を10万
0717ウルトラスーパーハイパートークンバスドルルモンバーストモード
垢版 |
2018/01/10(水) 03:06:29.33ID:FRfZrkaY
カベモンは強豪だよ
カベモンは強剛だよ
カベモンは強烈だよ
カベモンは強靭だよ
カベモンは強者だよ
カベモンは強大だよ
カベモンは強力だよ
カベモンは強いよ
カベモンの勝ち
カベモンの勝利
カベモンの大勝利
カベモンの完全勝利
カベモンの圧勝
カベモンの楽勝
カベモンの連勝
カベモンの全勝
カベモンの完勝
カベモンの必勝
カベモンの奇勝
カベモンの優勝
カベモンの制勝
カベモンの戦勝
0718オーバーテクナナシー
垢版 |
2018/01/10(水) 10:06:44.14ID:H4TMfGjA
ナザレのヨシュアが話したことばは、アラム語らしく、それは古代シュメール文明のアッカド人の言語であるらしい。
アラム語とアラブ語は非常に強い関連性があるとして、研究がされている。

これに勝ったのはモンゴルと大英帝国だけであり、つまり、現代なら科学者の国だけだろうといわれている。
0719オーバーテクナナシー
垢版 |
2018/01/10(水) 11:12:32.39ID:H4TMfGjA
旧約聖書の創世記が大切にされるのは、アフリカの密林の時代から伝わる数少ない口伝の文字起こしされた伝承だからである。
最古でも、唯一でもないが、大事にされている。
まちがいだらけなのは当然である。
0723オーバーテクナナシー
垢版 |
2018/01/21(日) 15:16:59.69ID:K5M7JOob
ワタミンは熱心な創価学会の信者だが。

判明。

創価学会の心のよりどころは、法華経でも池田大作の人間革命でもなく、
みなもと太郎の漫画「風雲児たち」であった。

日蓮の人生もありえないくらい素晴らしいらしいが、封印されててわからない。

「風雲児たち」はマジでいい漫画なので、せめて五巻までは読もう。
どんな聖書や仏典より素晴らしい。
0725ウルトラスーパーハイパースペーサードルルモンバーストモード
垢版 |
2018/02/09(金) 02:11:41.61ID:rSEeg8uX
デジモンセイバーズは強烈だよ
デジモンセイバーズは強剛だよ
デジモンセイバーズは強豪だよ
デジモンセイバーズは強靭だよ
デジモンセイバーズは強者だよ
デジモンセイバーズは強大だよ
デジモンセイバーズは強力だよ
デジモンセイバーズは強いよ
デジモンセイバーズの連勝
デジモンセイバーズの奇勝
デジモンセイバーズの必勝
デジモンセイバーズの完勝
デジモンセイバーズの全勝
デジモンセイバーズの優勝
デジモンセイバーズの戦勝
デジモンセイバーズの制勝
デジモンセイバーズの圧勝
デジモンセイバーズの楽勝
デジモンセイバーズの完全勝利
デジモンセイバーズの大勝利
デジモンセイバーズの勝利
デジモンセイバーズの勝ち
0726696
垢版 |
2018/02/24(土) 21:46:42.08ID:YaESnXc7
>>708 趣旨 : 含 先生方式
0727722
垢版 |
2018/03/03(土) 23:47:39.60ID:QKpRLUAO
1518883298/603# NikkeiSaiensu RyousiKonpyuuta KuraSaba
0729>>709
垢版 |
2018/03/18(日) 14:14:39.71ID:mdY6euhb
1520781708/657#12#506-# Google Yamamoto Furusawa
0730>>710
垢版 |
2018/03/24(土) 22:13:58.19ID:Ou0YUfWa
>>711 /1521525644/255#358##379# Tyouzetu IjinguSupakon
0733>>730
垢版 |
2018/04/08(日) 13:04:40.14ID:vYQeZKWT
hitati+ijingu+sram
1522158608/597#1521525644/490##595# fujituu
0734オーバーテクナナシー
垢版 |
2018/05/17(木) 12:40:56.66ID:6koctVbj
いろいろと役に立つPCさえあれば幸せ小金持ちになれるノウハウ
暇な人は見てみるといいかもしれません
グーグルで検索するといいかも『ネットで稼ぐ方法 モニアレフヌノ』

2GGU6
0735>>727
垢版 |
2018/05/27(日) 12:01:49.32ID:36TMfdUR
1526189591/130# 327#393-429(393,396,429)#443# Rigetti # NICT Hikari Ryousi # KeiouS/W IBM # Tuyoi 1qbit
0736>>711
垢版 |
2018/06/03(日) 19:44:24.67ID:NWrDDaEE
ポリテック http://rio2016.2ch.net/test/read.cgi/future/1526189591/22

ついで扱いご容赦 小沢一郎先生辺りの言葉は宜しくありませんが点数稼ぎ用 ? ( PEZY )
ttp://mobile.twitter.com/telmin_orca?max_id=1002146192153690111
p://mobile.twitter.com/telmin_orca/status/1002875424605499392
0737>>736
垢版 |
2018/06/10(日) 01:36:07.81ID:OGJRAL12
>>736 http://rio2016.2ch.net/test/read.cgi/future/1513529234/537#1528561945
ttp://mobile.twitter.com/tanakh/status/1002429850081083393#1002139308986269696#1002137920768126977#1002136040121876481#1002132043411505152
ttp://mobile.twitter.com/telmin_orca/status/1002131662690443264
ttp://mobile.twitter.com/tanakh/status/1002131729912553472#1002130784000487424#1002433561473921023max1002141410055733247id1002131107582640127
ttp://mobile.twitter.com/telmin_orca/status/1002120639598100480
0739ウルトラスーパーハイパーリターンドルルモンバーストモード
垢版 |
2018/07/20(金) 05:18:23.94ID:+7AaourJ
僕はザッソーモンが好きだよ、僕はザッソーモンが大好きだよ、僕はザッソーモンが御好みだよ、僕はザッソーモンを愛好するよ、僕はザッソーモンを有効するよ、僕はザッソーモンを嗜好するよ
寧ろ逆にザッソーモンを大切にするよ、他に別にザッソーモンを大事にするよ、例え仮に其れでもザッソーモンを重視するよ、特にザッソーモンを尊敬するよ、もしもザッソーモンを褒めるよ
十中八九ザッソーモンを希望するよ、森羅万象ザッソーモンを渇望するよ、無我夢中ザッソーモンを要望するよ、五里霧中ザッソーモンを切望するよ、天上天下ザッソーモンを熱望するよ、是非ともザッソーモンを祈願するよ
必ずザッソーモンは斬新奇抜だよ、絶対にザッソーモンは新機軸だよ、確実にザッソーモンは独創的だよ、十割ザッソーモンは個性的だよ、100%ザッソーモンは画期的だよ
当然ザッソーモンに決定だよ、絶対にザッソーモンに限定だよ、確実にザッソーモンに指定だよ、十割ザッソーモンに認定だよ、100%ザッソーモンに確定だよ
ザッソーモンは強いよ、ザッソーモンは強力だよ、ザッソーモンは強大だよ、ザッソーモンは強者だよ、ザッソーモンは強烈だよ、ザッソーモンは強靭だよ、ザッソーモンは強豪だよ、ザッソーモンは強剛だよ
ザッソーモンの勝ち、ザッソーモンの勝利、ザッソーモンの大勝利、ザッソーモンの完全勝利、ザッソーモンの圧勝、ザッソーモンの楽勝
ザッソーモンの連勝、ザッソーモンの優勝、ザッソーモンの戦勝、ザッソーモンの制勝
ザッソーモンの奇勝、ザッソーモンの必勝、ザッソーモンの全勝、ザッソーモンの完勝
0740>>733-738
垢版 |
2018/08/20(月) 02:10:51.00ID:xpTaf9mR?2BP(0)

>>730 Tyouzetu DejitaruIjingu >>710-711
>82 yamaguti 180812 0709 ltAhnLdz?
:
>>14>ry CPU より PEZY-SC の方が明らかに効率的
>>15>ry ・イジングマシンはより高い正答率
0741YAMAGUTIseisei
垢版 |
2018/11/04(日) 20:45:53.59ID:p92jbM/P?2BP(0)

>>597
>690 yamaguti~貸 170925 2213 mWACkEZG? 47 yamaguti~貸 171009 0201 4syyn69F
:
> >686-687
> 観測 ( 固定化 ) = 意識化 ( 認識 ) = 嘘の直列近似化
>
>
> >380 yamaguti~貸 170914 2148 0i4loNv/?
>>>> 天動説 轍
>>>>>> 川人 [15] は, ry 「意識」とは ry 膨大かつ並列 ry 単純化 ry 「うその」直列 ry 近似
>>>>> :
>>>>>> 無意識 ry 膨大な自律分散 ry ,自分が行 ry 錯覚 ry ,単純化し追体験 ry 受動 ry [16]

http://webcache.googleusercontent.com/search?q=cache:lab.sdm.keio.ac.jp/maenolab/previoushp/Maeno/consciousness/RSJ2005kokoro.pdf

:
> >597 yamaguti~貸 161217 0124 6O1Nu3vi
> :
>> 情報物理統一動記憶システム ≒ 科学哲学大統一理論 = raw マスターアルゴリズム
> :


>18 yamaguti 181027 1540 AJ0Ulonr?
:
>>> 訂正 13>http://rio2016.2ch.net/test/read.cgi/future/1427220599/597# DouKiokuSisutemu DaiTouituRiron
:
0742YAMAGUTIseisei
垢版 |
2018/12/01(土) 23:19:05.08ID:pKy81yx+?2BP(0)

訂正

>>479
× フェイルレストランザクション
○ ペナルティ隠蔽余地トランザクション

>>480
× ソフトタイピング
○ 準自律タイピング
0743オーバーテクナナシー
垢版 |
2018/12/03(月) 01:47:08.67ID:M02n0CCk
ナノマシンの実機製造技術は?
0744yamaguti
垢版 |
2018/12/16(日) 20:15:37.81ID:cVooVVvB?2BP(0)

>>535 TPU
訂正
当方見解 ( 現時点 ) : シストリックアレイベース CISC
>>724
0745YAMAGUTIseisei
垢版 |
2018/12/17(月) 19:54:42.81ID:wTQbtxsi?2BP(0)

>364 ー 181205 1819 apGRu5oh
> Introducing the Graphcore Rackscale IPU-POD
>http://www.graphcore.ai/posts/introducing-the-graphcore-rackscale-ipu-pod
>ベールに包まれていたGraphcore, .32台のサーバで混合精度計算 ,4096台のサーバで混
>http://mobile.twitter.com/yutakashino/status/1070129792903733248

>365 ー 181205 1829 lmcLPDjK
> >364
>>A single 42U rack IPU-Pod delivers over 16 Petaflops of mixed precision compute and
>>a system of 32 IPU-Pods scales to over 0.5 Exaflops of mixed precision compute.
>mixed precision FP32とFP16か?
>なスパコンの計測はFP64だから8PFLOPSと0.25EFLOPS(=250PFLOPS


>>722-735
>786 ー 181214 0213 Gm1fOoDH
> インテルの量子コンピュータ開発担当者 、
> 量子コンピュータの実用化は10年 。 歴史
> 1947 初のトランジスタ
> 1959 ICチップ
> 1971 市場進出
>
> 量子コンピュータは様々なタイプ 、
> シリコン上の電子スピンを利用するタイプはスケーリングができて、有望とのこと。
> 冷却タイプはもともと大きくてスケーリングが難しい。
> レーザーでのスピンはインテルでは技術レベルが未熟で扱えないため。
>
> その他、量子コンピュータ事情が分かりやすく説明されている。
>
> How Close Are We—Really—to Building a Quantum Computer?
>http://www.scientificamerican.com/article/how-close-are-we-really-to-building-a-quantum-computer/
https://twitter.com/5chan_nel (5ch newer account)
0746yamaguti
垢版 |
2018/12/17(月) 19:57:11.10ID:wTQbtxsi?2BP(0)

>773 ー 181213 1246 V4E1d8XJ
:
>Cloud TPU v2 PodとGPU 比較。256チップのフル構成ではV100 x 8と比べ27倍速くコストは4割減。 #gcpja
>http://cloud.google.com/blog/products/ai-machine-learning/now-you-can-train-ml-models-faster-and-lower-cost-cloud-tpu-pods
>http://mobile.twitter.com/kazunori_279/status/1072954828974784513##
:

>776 ー 181213 1614 pWlflWAX
> Googleの機械学習マシン「Cloud TPU Pod」の新型はNVIDIA Tesla V100の200倍高速に
>http://gigazine.net/news/20181213-google-cloud-tpu-pods-lower-faster/

>>724 >ttp://m.youtube.com/watch?v=JPesXe4-nB4## &t=中盤# CISC

>253 ー 181204 1653 UdHQhElY
>Googleチームの就職面接後に「 研究内容の 」 発生 - GIGAZINE  
:

>887 ー 181215 1832 /P3ppD9c
> >883
> 日本の記事では大きくは書いてないけど高圧下の話だよね?
> 170GPaって1700000気圧、海底の圧力は厳しいと言われてるけど水深換算すると17000000m、地球の直径の1.5倍
>かなり特殊な環 ?
>すごい けど、 ことん圧力かけたら何でも超電導になるんじゃないのかとか思っ
>の もそうだけどわずか3日の学習でプロに勝っ 普通のPC数万台分

>254 ー 181204 1703 UdHQhElY
>後藤弘茂 】ZEN 2ベースの64コアCPU「Rome」はなぜCPUとI/Oを分 - PC Watch  
>http://m.pc.watch.impress.co.jp/docs/column/kaigai/1156455.html##
>、先端 新 、IOや共通部分は枯れた技術
:

http://google.jp/search?q=cellbe+syurinku+i/o
https://twitter.com/5chan_nel (5ch newer account)
0747yamaguti
垢版 |
2018/12/18(火) 08:33:43.71ID:1Mljh8RF?2BP(0)

>98 yamaguti 181214 0858 QfhBU4VJ
> >749 ー 181212 1810 WEzMHHul
>> IonQのロードマップ
:
> >750 ー 181212 1812 WEzMHHul
>:
>> 量子機械学習の一歩踏み出す、伊チームがパーセプトロン実装に成功
>>http://www.technologyreview.jp/s/113200/machine-learning-meet-quantum-computing/##
>> イタリアのパヴィア大学の研究チームは、IBMの5キュービットの量子プロセッサー上にパーセプトロンを実装し、 初歩的 確認
>>、IBMは16キュービットの量子プロセッサーをWeb上 、量子パー 飛躍的 時間の問題
> :
:

>20 ー 181217 1952 L+9pcDhP >104 ー 181217 2230 rhABfNva
> IonQ、1原子を1量子ビットとする“イオントラップ”型量子コンピュータ
> 〜既存の全量子コンピュータを上回る性能を実現
>http://m.pc.watch.impress.co.jp/docs/news/1158837.html

>のシステムは160qubit(量子ビット)を備え、79qubitの演算を達成。論理演算精度の指標となる「ゲート忠実度」は、
>13qubitの構成において1qubitおよび2qubit両方の操作で平均98%以上を記録し、既存の市販量子コンピュータよりも、長い計算を処理でき
:
0748yamaguti
垢版 |
2018/12/18(火) 08:34:24.84ID:1Mljh8RF?2BP(0)

>96 yamaguti 181214 0855 QfhBU4VJ
> >751 ー 181212 2105 Y/tlnxVE
> :
>>量子ビットは、増やすことに関して、一旦量子もつれや量子重ね合わせを妨害する仕組みを除去できたら、このグラフ以上の成長曲線で達
:

山本宇都宮方式 >>696-697 >>708-709 >726

>709
リンク先
>527 yamaguti~kasi 170628 2254 Cu6v0wxz
> >501
> >440 yamaguti~kasi 170524 1251 JnVuKVhJ
> :
>> 但し プログラムストアード型 ( ノイマン型 ) 前座 脳型
>>→ エラー内包 ( 繰込 ) 系アルゴリズム = NN = 山本先生 ry
>> 同様 : アニーリングベース準ネイティブニューロン
>
> = 万能論理演算器
>
> ttp://rio2016.2ch.net/test/read.cgi/future/1489922543/97-98# xor eor
0749YAMAGUTIseisei
垢版 |
2019/03/03(日) 15:44:27.12ID:+7/NmDId?2BP(0)

>617 ー 190131 1322 5x7gc64q
> 新型超伝導回路を用いた超低電力集積回路の実証に成功 ~高性能コンピュータの大幅な低消費電力化を可能に~
> https://research-er.jp/articles/view/77000
> 1 演算あたり 1.5 aJ (a は 10の-18乗)で動作。従来の半導体集積回路より 6 桁程度小 。冷却 電力を見込んでもコンピュータの消費電 従来の約千分の 1
>
>今回開発 技術 、集積回路 電 飛躍的 減 、大規模な情報処理 。
>、極低温 量子コンピュータの制御用回路 応用
:

>640 ー 190223 1213 k+mU2RO7
:
> Google、極低温環境で動作し、1,000倍低消費電力な量子ビットコントローラ
>http://m.pc.watch.impress.co.jp/docs/news/1171152.html##
:
> 641 ー 190223 1219 M5UmcxeP
>>Google、極低温環境で動作し、1,000倍低消費電力な量子ビッ ーラ
>低温 電

> 390 ー 190226 1030 3oS+WEVZ
>量子コ 実現 第一歩、Googleが極低温で動作する量子ビッ ーラ
>http://techable.jp/archives/93813
:
0750>>749
垢版 |
2019/03/03(日) 15:46:39.50ID:+7/NmDId?2BP(0)

>435 ー 190221 1501 HrQSuLbP
:
>量子コンピュータ ? 基礎知識
>http://www.technologyreview.jp/s/127139/explainer-what-is-a-quantum-computer/
:

> 656 ー 180529 1750 +YQpGx1D
> 「ダイヤモンドの弦」にデータを保存する量子コンピューター用のメモリーシステム
:
>http://japanese.engadget.com/2018/05/28/diamond-strings-could-provide-memory-for-quantum-computers/

>293 ー 190102 1127 HHa4u+FL
> 量子コンピュータが社会を変える日に向けて
>http://www.qmedia.jp/qc-change-world/
:
> Tesla CEO Elon Musk's predictions for the future
>http://www.cnbc.com/amp/2018/12/31/tesla-ceo-elon-musks-predictions-for-the-future.html

> 673 ー 190108 0030 Sf9vWAEP
> 米、量子情報科学の研究強化 1400億円投資
>http://www.nikkei.com/article/DGKKZO39630250U9A100C1MY1000/

>949 ー 190122 2358 GSyMMYLX
>#量子コンピ 「理論から実機 時代
>IBM Qのおさらい、 量子ソフトウェア開発キット「QisKit」のレクチャ 動画で初公開!お客様の実例も #IBMQ
:
>http://m.youtube.com/watch?v=-CJNJ1ETV5Q##
>http://mobile.twitter.com/IBM_JAPAN/status/1087145490083389440##
https://twitter.com/5chan_nel (5ch newer account)
0751yamaguti
垢版 |
2019/03/27(水) 21:59:43.27ID:qWdbt0oO
http://rio2016.2ch.net/test/read.cgi/future/1553614026/35

>955 ー 190315 1758 D3cJTqNy
>ロシア】量子コンピュータを使ってエントロピーの法則の逆転に成功。コンピュータ内で時間遡行が可能に [
>http://leia.2ch.net/test/read.cgi/poverty/1552629999/

>958 ー 190315 1814 D3cJTqNy
>量子コ で時間を巻き戻 ? 新研究の真相
>http://www.technologyreview.jp/s/131009/no-ibm-didnt-just-reverse-time-with-a-quantum-computer/
:
レスを投稿する


ニューススポーツなんでも実況