>>46
>そもそも、ΩからR^Nへの関数Xは出題として出される
>このとき、Xの値域は、R^N全体ではなく、
>その中のたかだか100個の要素からなる有限集合であるから
>R^N全体におけるσ代数を考える必要はなく
>その中の有限集合におけるσ代数を考えればいい
>決定番号Dの場合も同様にその値域はN全体ではなく
>その中のたかだか100個の要素からなる有限集合であるから
>N全体におけるσ代数を考える必要はなく
>その中の有限集合におけるσ代数を考えればいい
>Ωをむやみに大きくする必要がない これが重要

ゴマカシだね
1)箱1個、サイコロの目を入れる Ω={1,2,3,4,5,6}(=Sとおく)
2)箱n個、サイコロの目を入れる Ω=S^n
3)箱N*個、サイコロの目を入れる Ω=S^N
 注)*Nは自然数の集合で可算無限の意味
4)サイコロの目 S={1,2,3,4,5,6}を実数全体 R={r∈ℝ} (記号濫用でℝとRを同じ記号でも良いが、使い分けておく)
 サイコロの目 Ω=S^Nが 100個の要素からなる有限集合にならないと同様の理由で、
 R^Nは100個の要素からなる有限集合にならない!

(参考)
https://rio2016.5ch.net/test/read.cgi/math/1710632805/
(参考)時枝記事
https://imgur.com/a/8bqlb08
数学セミナー201511月号「箱入り無数目」
https://rio2016.5ch.net/test/read.cgi/math/1620904362/401-406
純粋・応用数学(含むガロア理論)8 より
1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
2.続けて時枝はいう
 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている.
但しもっときびしい同値関係を使う.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版).
念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
幾何的には商射影 R^N→ R^N/〜の切断を選んだことになる.
任意の実数列s に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ.
sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す.
(補足)
sD+1, sD+2,sD+3,・・・:ここでD+1などは下付添え字