X



トップページ数学
5コメント6KB
数学の問題は誰が作っているのか?
■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2024/01/25(木) 09:15:02.39ID:Jxn8zjkT
誰か作ってる人がいるはずだが
0002132人目の素数さん
垢版 |
2024/01/27(土) 10:31:29.95ID:rVRhn++m
あげ
0003132人目の素数さん
垢版 |
2024/01/27(土) 10:50:54.13ID:YY7Zh7bJ
885 名前:132人目の素数さん[sage] 投稿日:2023/12/31(日) 15:50:49.09 ID:xhhv+g7J [1/2]
m/n=log(π) m、nは互いに素な正の整数
↔ e^{m/n}=π ↔ e^m=π^n
e<π<e^2 から e<n<2e
∴∃i=1,…,m-1 m=n+i
∴e^i=(π/e)^n<(1+(π-e)/e)^n
   <(1+(3.2-2.7)/(2.7))^n=(1+(32-27)/(27))^n=(1+1/(27/5))^n
   <(1+1/5)^n
   <(1+1/π)^π
   <lim_{x→+∞}(1+1/x)^x=e
∴矛盾
∴log(π) は無理数

886 名前:132人目の素数さん[sage] 投稿日:2023/12/31(日) 15:58:44.87 ID:xhhv+g7J [2/2]
e<π<e^2 から 不要
0004132人目の素数さん
垢版 |
2024/01/27(土) 10:51:40.99ID:YY7Zh7bJ
888 名前:132人目の素数さん[sage] 投稿日:2024/01/01(月) 15:20:00.11 ID:kD74UmIv [1/2]
>>887
[第1段]:log(π)が有理数であるとする。
A=(π-e)/e とおく。4>π>3>e>2 だから、
e<π<e^2 から 1<log(π)<2 であって、
或る互いに素な両方共に正の整数m、nが存在して log(π)=m/n だから、
1<m/n<2 から n<m<2n。
m、nはどちらも正の整数だから、
mに対して或る i=1,…,m-1 が存在して m=n+i。
また、π=e^{m/n}。よって、π=e^{(n+i)/n} とAの定義から
e^i=(π/e)^n=(1+A)^n。

[第2段]:4e=4Σ_{k=0,1,…,+∞}1/k!
   >4(1+1+1/2!)
   =4×5/2
   =10、
また、3π<3×3.2=9.6、
よって、4e>3π であって、π>e>1 から Aの定義に注意すれば 1/A<1/3。

[第3段]:7/2>π>3>e>5/2 からAの定義に注意すれば A<1/e<1 だから、A<1/A。
よって、(1+A)^n<(1+1/A)^n であって e^i<(1+1/A)^n。

889 名前:132人目の素数さん[sage] 投稿日:2024/01/01(月) 15:22:46.75 ID:kD74UmIv [2/2]
>>887
(>>888の続き)
[第4段]:Case1)、n<A のとき。このとき 1/A<1/n だから、
e^i<(1+1/n)^n<lim_{x→+∞}(1+1/x)^x=e
であって、矛盾する。
Case2)、n>A のとき。
eの定義から e<2.72 だから 8e<8×2.72=21.76。
また、πの定義から π>3,14 だから 7π>7×3.14=21.98。
よって、 8e<7π であって、π>e>1 から Aの定義に注意すれば 1/A>1/7。
故に、3<A<7 であって、正の整数nについて n≧7。1/7<1/A<1/3 だから、
e^i<(1+1/A)^n<(1+1/3)^n=(1+1/3)^3×(1+1/3)^{n-3}<e×(1+1/3)^{n-3}、
よって、e^{i+3}<e×(1+1/3)^n、
kを正の整数とする。
e^{i+3k)}<(1+1/3)^n=(1+1/3)^3×(1+1/3)^{n-3k})<e×(1+1/3)^{n-3k}
とすれば、e^{i+6k}<e×(1+1/3)^n<e×(1+1/3)^{n-3k}<(1+1/3)^n。
故に、kについて小さい方から帰納的に同様な評価を有限回繰り返せば、
或る正の整数kが存在して、j≧k のとき e^{i+3j}<(1+1/3)^n。
しかし、これは、或る j≧k なる整数jが存在して e^{i+3j}>(1+1/3)^n なることに反し矛盾する。
0005132人目の素数さん
垢版 |
2024/01/27(土) 10:52:20.58ID:YY7Zh7bJ
902 名前:132人目の素数さん[sage] 投稿日:2024/01/03(水) 08:38:26.69 ID:RmVqCZsn [1/4]
>>900
いうまでもないだろうが、有理数の定義から、実数 log(π) が有理数か? という問題と、
両方共に或る互いに素な正の整数m、nが存在して m/n=log(π) となるか?
という問題は、数学的に同じ問題
xを実変数とすると指数関数 f(x)=e^x と対数関数 g(x)=log(x) x>0 は互いに逆関数の関係にあって、
log(p) が無理数となる無理数pは正の実数でpに対して或る無理数aを用いて p=e^a と書けるから、
log(p) が無理数となる無理数pの空間は正の無理数全体上におけるルベーグ測度が+∞の非可算な可測集合である
だから、そもそも、>>887
>これがただしいなら3.1415926535..付近の任意の実数pに対してlog(p)は無理数になってしまうけどそんなはずないもん
という指摘は間違っていて、正確には「π付近の任意の実数pに対して」ではなくて、
>これが正しいなら、実数体R上で任意のπ付近の殆ど至るところ
>すべての点pに対して log(p) は無理数になってしまうけどそんなはずないもん
という指摘でないといけない。それで、πは無理数で、実数体Rから零集合Qを除いた下で、
普通の方法で log(π) を有理数と仮定して、eとπの定義に従って定量的評価をして矛盾が導けたから、
背理法を適用して log(π) が無理数なることを示しただけ

906 名前:132人目の素数さん[sage] 投稿日:2024/01/03(水) 17:06:10.54 ID:RmVqCZsn [2/4]
>>903-904
いっとくけど、実数体R上の零集合 A={log(p)| p∈Q、p>0 } に log(π) は属さないよ
で、πは周期環Pの超越数で log(π)=∫_{1、π}(1/x)dx だから、log(π) は周期環Pの実数である
また、有理数体Qは周期環Pの部分集合だから、零集合Aは周期環Pの部分集合である
よって、log(π)∈(R∩P)-A である
同様に、p>e のときは log(log(p))∈(R∩P)-A だから、log(log(π))∈(R∩P)-A である
ここで、log(π)∈Q とすれば、log(π) は周期環Pに属する実数で、log(π)>1 だから、
零集合Aの定義から、 log(π)∈A であって、log(π)∈(R∩P)-A に反するから、矛盾する
だから、log(π) は周期環Pに属する無理数である
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況