>>94 追加

まとめるよ

「複素関数概説 黒田正 共立出版」>>73 より
P169
「補助定理」関数f(z)はz平面の開円板D:|z|<R で正則であって
そこでf(z)≠0であるとすれば、Dで
f(z)=e^h(z)=(g(z))^k (kは正の整数)
をみたすDでは正則な関数h(z),g(z)が存在する。ここで、h(0),g(0)は、値f(0)のみで定まる
証明
(べき級数展開を使っているが、詳しくは原本ご参照)
P170
「定理7.10」(ショットキ(Schottky))
関数f(z)はz平面の開円板D:|z|<R で正則でそこで
f(z)≠0,1 であれば、任意の正の整数r(<R)に対し|z|<=rなら
K(f(0),R/r)^-1<=|f(z)|<=K(f(0),R/r)
となるf(0)とRr^-1のみに依存して定まる定数K(f(0),Rr^-1)が存在する
証明
補助定理によってf(z)=e^2πih(z)となるDでの正則関数h(z)が存在する

ふたたび補助定理によって略
よって
f(z)=e^2πih(z)=e^2πi(g(z))^2=e^-1/2πi(e^2φ(z)+e^-2φ(z)))
ここにφ(0)は値f(0)のみに依存して定まることは明らかである
(この後、上記 定数K(f(0),Rr^-1)の議論へ)


上記証明の e^-1/2πi(e^2φ(z)+e^-2φ(z)))の部分が、>>29の ”f(z) = exp(2πicosh(g(z)))”に関係する部分なのでしょうね(cosh(z)は下記双曲線関数)

で、上記黒田正と下記辻の Schottkyの定理の証明を比べると、辻では J(z)の逆函数で無限多価函数になるものを処理して使っている(この関数自身は、著書の前にあるのでしょうね。辻は、cosh(z)は使っていないかも、見てないがw)

そういう目で、黒田 「補助定理」を見ると、e^h(z)として指数関数として、べき級数展開を使って、無限多価に踏み込まないで処理していると見ました(この議論は、黒田の同P45~48の 指数関数及び対数関数の処理と同じでしょう)

つづく