【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
探検
やさしいフェルマーの最終定理の証明V
レス数が1000を超えています。これ以上書き込みはできません。
1日高
2021/03/04(木) 12:23:11.66ID:FbLTf6OQ2日高
2021/03/04(木) 12:24:43.66ID:FbLTf6OQ 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
3日高
2021/03/04(木) 12:25:44.50ID:FbLTf6OQ (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
4日高
2021/03/04(木) 12:26:29.65ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
5日高
2021/03/04(木) 12:27:13.78ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/04(木) 12:44:35.69ID:XSrMEdtT
997 名前:日高[] 投稿日:2021/03/04(木) 12:16:29.97 ID:FbLTf6OQ [25/28]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
998 名前:日高[] 投稿日:2021/03/04(木) 12:17:25.63 ID:FbLTf6OQ [26/28]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
999 名前:日高[] 投稿日:2021/03/04(木) 12:18:17.09 ID:FbLTf6OQ [27/28]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
1000 名前:日高[] 投稿日:2021/03/04(木) 12:19:18.15 ID:FbLTf6OQ [28/28]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
998 名前:日高[] 投稿日:2021/03/04(木) 12:17:25.63 ID:FbLTf6OQ [26/28]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
999 名前:日高[] 投稿日:2021/03/04(木) 12:18:17.09 ID:FbLTf6OQ [27/28]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
1000 名前:日高[] 投稿日:2021/03/04(木) 12:19:18.15 ID:FbLTf6OQ [28/28]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/04(木) 12:45:17.70ID:XSrMEdtT
1 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 12:23:11.66 ID:FbLTf6OQ [1/5]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/03/04(木) 12:24:43.66 ID:FbLTf6OQ [2/5]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
3 名前:日高[] 投稿日:2021/03/04(木) 12:25:44.50 ID:FbLTf6OQ [3/5]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/03/04(木) 12:24:43.66 ID:FbLTf6OQ [2/5]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
3 名前:日高[] 投稿日:2021/03/04(木) 12:25:44.50 ID:FbLTf6OQ [3/5]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
2021/03/04(木) 12:45:48.51ID:XSrMEdtT
4 名前:日高[] 投稿日:2021/03/04(木) 12:26:29.65 ID:FbLTf6OQ [4/5]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
5 名前:日高[] 投稿日:2021/03/04(木) 12:27:13.78 ID:FbLTf6OQ [5/5]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
5 名前:日高[] 投稿日:2021/03/04(木) 12:27:13.78 ID:FbLTf6OQ [5/5]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/04(木) 12:49:44.16ID:XSrMEdtT
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/04(木) 12:50:05.66ID:smmRbhkf
> (1)を変形して、(3)となります。
なりません。
なりません。
2021/03/04(木) 12:50:23.47ID:XSrMEdtT
城西大学 理学部
文教大学 教育学部 学校教育課程 数学専修
岐阜聖徳学園大学 教育学部 学校教育課程 数学専修
常葉大学 教育学部 初等教育課程 数学専攻
秀明大学 学校教師学部 中等教育教員養成課程 数学専修コース
明星大学 教育学部 教育学科 教科専門コース 数学コース
文教大学 教育学部 学校教育課程 数学専修
岐阜聖徳学園大学 教育学部 学校教育課程 数学専修
常葉大学 教育学部 初等教育課程 数学専攻
秀明大学 学校教師学部 中等教育教員養成課程 数学専修コース
明星大学 教育学部 教育学科 教科専門コース 数学コース
12日高
2021/03/04(木) 13:00:08.54ID:FbLTf6OQ >10
> (1)を変形して、(3)となります。
なりません。
どうしてでしょうか?
> (1)を変形して、(3)となります。
なりません。
どうしてでしょうか?
13日高
2021/03/04(木) 13:01:25.48ID:FbLTf6OQ 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2021/03/04(木) 13:01:38.87ID:smmRbhkf
じゃあ変形してみせてください。
15日高
2021/03/04(木) 13:02:04.57ID:FbLTf6OQ (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
16日高
2021/03/04(木) 13:02:41.68ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
17日高
2021/03/04(木) 13:03:27.41ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
18日高
2021/03/04(木) 13:13:38.51ID:FbLTf6OQ >14
じゃあ変形してみせてください。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)を変形すると、
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)となります。
変形すると、
x^n+y^n=(x+r)^nとなります。
じゃあ変形してみせてください。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)を変形すると、
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)となります。
変形すると、
x^n+y^n=(x+r)^nとなります。
2021/03/04(木) 13:28:55.34ID:smmRbhkf
それは(3)を変形して(1)にしてるんでしょ? 逆。
20日高
2021/03/04(木) 13:49:53.91ID:FbLTf6OQ >19
それは(3)を変形して(1)にしてるんでしょ? 逆。
逆も、同じです。
それは(3)を変形して(1)にしてるんでしょ? 逆。
逆も、同じです。
2021/03/04(木) 14:00:10.54ID:smmRbhkf
逆にはたどれません。
22日高
2021/03/04(木) 14:03:42.74ID:FbLTf6OQ >21
逆にはたどれません。
どうしてでしょうか?
逆にはたどれません。
どうしてでしょうか?
2021/03/04(木) 14:31:26.51ID:smmRbhkf
じゃあたどってみせてください。
24日高
2021/03/04(木) 14:38:26.05ID:FbLTf6OQ >23
じゃあたどってみせてください。
どの部分が分からないのでしょうか?
じゃあたどってみせてください。
どの部分が分からないのでしょうか?
2021/03/04(木) 14:51:41.82ID:smmRbhkf
r^(n-1)=nが、出るところです。
2021/03/04(木) 15:49:36.09ID:XSrMEdtT
13 名前:日高[] 投稿日:2021/03/04(木) 13:01:25.48 ID:FbLTf6OQ [7/14]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
15 名前:日高[] 投稿日:2021/03/04(木) 13:02:04.57 ID:FbLTf6OQ [8/14]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
16 名前:日高[] 投稿日:2021/03/04(木) 13:02:41.68 ID:FbLTf6OQ [9/14]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
15 名前:日高[] 投稿日:2021/03/04(木) 13:02:04.57 ID:FbLTf6OQ [8/14]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
16 名前:日高[] 投稿日:2021/03/04(木) 13:02:41.68 ID:FbLTf6OQ [9/14]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
2021/03/04(木) 15:50:02.56ID:XSrMEdtT
17 名前:日高[] 投稿日:2021/03/04(木) 13:03:27.41 ID:FbLTf6OQ [10/14]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
18 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 13:13:38.51 ID:FbLTf6OQ [11/14]
>14
じゃあ変形してみせてください。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)を変形すると、
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)となります。
変形すると、
x^n+y^n=(x+r)^nとなります。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
18 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 13:13:38.51 ID:FbLTf6OQ [11/14]
>14
じゃあ変形してみせてください。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)を変形すると、
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)となります。
変形すると、
x^n+y^n=(x+r)^nとなります。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
28日高
2021/03/04(木) 16:03:08.13ID:FbLTf6OQ >25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
2021/03/04(木) 16:23:02.70ID:smmRbhkf
左辺の左側=右辺の左側、って何ですか?
2021/03/04(木) 16:53:37.62ID:XSrMEdtT
28 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 16:03:08.13 ID:FbLTf6OQ [15/15]
>25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
28 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 16:03:08.13 ID:FbLTf6OQ [15/15]
>25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
28 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 16:03:08.13 ID:FbLTf6OQ [15/15]
>25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
28 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 16:03:08.13 ID:FbLTf6OQ [15/15]
>25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
>25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
28 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 16:03:08.13 ID:FbLTf6OQ [15/15]
>25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
28 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 16:03:08.13 ID:FbLTf6OQ [15/15]
>25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
28 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 16:03:08.13 ID:FbLTf6OQ [15/15]
>25
r^(n-1)=nが、出るところです。
r^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)をa=1とすると、
r^(n-1){(y/r)^n-1}=n{x^(n-1)+…+r^(n-2)x}となります。
左辺の左側=右辺の左側とすると、
r^(n-1)=nとなります。
31日高
2021/03/04(木) 17:02:32.76ID:FbLTf6OQ >29
左辺の左側=右辺の左側、って何ですか?
AB=2*3ならば、A=2となります。
左辺の左側=右辺の左側、って何ですか?
AB=2*3ならば、A=2となります。
2021/03/04(木) 17:23:46.39ID:smmRbhkf
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
それ、どこで習いました?
33日高
2021/03/04(木) 17:54:38.01ID:FbLTf6OQ >32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
34日高
2021/03/04(木) 17:56:47.48ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
35日高
2021/03/04(木) 17:58:58.68ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
36日高
2021/03/04(木) 18:01:10.47ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
2021/03/04(木) 18:08:32.74ID:smmRbhkf
AB=3*2ならどうなりますか?
38日高
2021/03/04(木) 18:09:13.45ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
39日高
2021/03/04(木) 18:11:18.17ID:FbLTf6OQ >37
AB=3*2ならどうなりますか?
A=3となります。
AB=3*2ならどうなりますか?
A=3となります。
2021/03/04(木) 18:21:08.62ID:smmRbhkf
2*3=3*2であることは認めますか?
41日高
2021/03/04(木) 18:25:35.86ID:FbLTf6OQ >40
2*3=3*2であることは認めますか?
はい。
2*3=3*2であることは認めますか?
はい。
42日高
2021/03/04(木) 18:27:19.56ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7/3を代入する。
ピタゴラス数x=13、y=84、z=85を得る。
x^2+y^2=(x+2)^2に、y=7/3を代入する。
ピタゴラス数x=13、y=84、z=85を得る。
2021/03/04(木) 18:33:46.02ID:PJsRYT3U
2021/03/04(木) 19:05:10.51ID:smmRbhkf
AB=6ならどうなりますか?
45日高
2021/03/04(木) 19:25:06.18ID:FbLTf6OQ >43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
46日高
2021/03/04(木) 19:31:54.72ID:FbLTf6OQ >44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
47日高
2021/03/04(木) 19:34:07.46ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
2021/03/04(木) 19:35:49.30ID:56qq8cPS
AB=1*6ならどうなりますか?
2021/03/04(木) 19:37:31.41ID:XSrMEdtT
31 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:02:32.76 ID:FbLTf6OQ [16/27]
>29
左辺の左側=右辺の左側、って何ですか?
AB=2*3ならば、A=2となります。
32 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 17:23:46.39 ID:smmRbhkf [8/11]
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
34 名前:日高[] 投稿日:2021/03/04(木) 17:56:47.48 ID:FbLTf6OQ [18/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
35 名前:日高[] 投稿日:2021/03/04(木) 17:58:58.68 ID:FbLTf6OQ [19/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
36 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:01:10.47 ID:FbLTf6OQ [20/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
>29
左辺の左側=右辺の左側、って何ですか?
AB=2*3ならば、A=2となります。
32 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 17:23:46.39 ID:smmRbhkf [8/11]
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
34 名前:日高[] 投稿日:2021/03/04(木) 17:56:47.48 ID:FbLTf6OQ [18/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
35 名前:日高[] 投稿日:2021/03/04(木) 17:58:58.68 ID:FbLTf6OQ [19/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
36 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:01:10.47 ID:FbLTf6OQ [20/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
2021/03/04(木) 19:38:03.08ID:XSrMEdtT
37 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 18:08:32.74 ID:smmRbhkf [9/11]
AB=3*2ならどうなりますか?
38 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:09:13.45 ID:FbLTf6OQ [21/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
40 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 18:21:08.62 ID:smmRbhkf [10/11]
2*3=3*2であることは認めますか?
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
AB=3*2ならどうなりますか?
38 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:09:13.45 ID:FbLTf6OQ [21/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
40 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 18:21:08.62 ID:smmRbhkf [10/11]
2*3=3*2であることは認めますか?
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
2021/03/04(木) 19:38:24.02ID:XSrMEdtT
42 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:27:19.56 ID:FbLTf6OQ [24/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7/3を代入する。
ピタゴラス数x=13、y=84、z=85を得る。
43 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 18:33:46.02 ID:PJsRYT3U
>>13
> (4)(3)(2)(1)の解の比は、同じとなる。
とのことですが、このとき
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
44 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 19:05:10.51 ID:smmRbhkf [11/11]
AB=6ならどうなりますか?
45 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/27]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
47 名前:日高[] 投稿日:2021/03/04(木) 19:34:07.46 ID:FbLTf6OQ [27/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7/3を代入する。
ピタゴラス数x=13、y=84、z=85を得る。
43 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 18:33:46.02 ID:PJsRYT3U
>>13
> (4)(3)(2)(1)の解の比は、同じとなる。
とのことですが、このとき
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
44 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 19:05:10.51 ID:smmRbhkf [11/11]
AB=6ならどうなりますか?
45 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/27]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
47 名前:日高[] 投稿日:2021/03/04(木) 19:34:07.46 ID:FbLTf6OQ [27/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
2021/03/04(木) 19:41:05.42ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
2021/03/04(木) 19:41:53.63ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
2021/03/04(木) 19:42:25.63ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55日高
2021/03/04(木) 19:45:08.18ID:FbLTf6OQ >48
AB=1*6ならどうなりますか?
A=1,B=6となります。
AB=1*6ならどうなりますか?
A=1,B=6となります。
2021/03/04(木) 19:45:54.39ID:56qq8cPS
AB=2*3*5だったら?
57日高
2021/03/04(木) 19:47:13.22ID:FbLTf6OQ 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
58日高
2021/03/04(木) 19:49:44.49ID:FbLTf6OQ >56
AB=2*3*5だったら?
A=(2*3*5)/B,B=(2*3*5)/Aとなります。
AB=2*3*5だったら?
A=(2*3*5)/B,B=(2*3*5)/Aとなります。
59日高
2021/03/04(木) 19:55:21.94ID:FbLTf6OQ 【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
2021/03/04(木) 19:58:26.33ID:56qq8cPS
AB=2*3=3*2=ABだったら?
2021/03/04(木) 19:58:26.34ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
2021/03/04(木) 19:59:07.08ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
63日高
2021/03/04(木) 20:21:48.61ID:FbLTf6OQ >60
AB=2*3=3*2=ABだったら?
A=2*3/B,B=2*3/Aとなります。
AB=2*3=3*2=ABだったら?
A=2*3/B,B=2*3/Aとなります。
2021/03/04(木) 20:57:15.79ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
2021/03/04(木) 20:57:46.06ID:XSrMEdtT
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/04(木) 20:58:18.66ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
2021/03/04(木) 20:58:48.74ID:XSrMEdtT
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/04(木) 20:59:37.72ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
2021/03/04(木) 21:13:39.00ID:HtAhLVuy
AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
2021/03/04(木) 23:06:30.03ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
2021/03/04(木) 23:07:03.09ID:XSrMEdtT
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/04(木) 23:07:35.14ID:XSrMEdtT
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
>32
> AB=2*3ならば、A=2となります。
それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
AB=1*6ならどうなりますか?
A=1,B=6となります。
2021/03/04(木) 23:45:26.92ID:fbt+FEwB
>>13
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
01行目 証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
07行目 (3)のx,yが無理数の場合は、x=sw、y=twとおく。
08行目 (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
09行目 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
10行目 s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
11行目 (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
12行目 (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
13行目 (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
05行目 (3)はyを有理数とすると、xは無理数となる。
までに、Aグループに有理数比の解があるかどうか、調べてないので
(3)のすべての解を調べたことに、なりません。
(3)のすべての解を調べていないので、(4)(3)(2)(1)の解の比は、すべてのパターンを調べていません。
たとえば、x,y,zが無理数になるパターンを、06行目までに調べていません。
調べていないことについては、なにもいえません。
よって、06行目はインチキのウソです。
13行目 (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
06行目はインチキのウソです。
インチキのウソは証拠にならないので、x^n+y^n=z^nのx,y,zが有理数の場合があるかどうかわかりません。
よって、13行目からいえることはなにもありません。
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
01行目 証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
07行目 (3)のx,yが無理数の場合は、x=sw、y=twとおく。
08行目 (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
09行目 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
10行目 s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
11行目 (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
12行目 (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
13行目 (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
05行目 (3)はyを有理数とすると、xは無理数となる。
までに、Aグループに有理数比の解があるかどうか、調べてないので
(3)のすべての解を調べたことに、なりません。
(3)のすべての解を調べていないので、(4)(3)(2)(1)の解の比は、すべてのパターンを調べていません。
たとえば、x,y,zが無理数になるパターンを、06行目までに調べていません。
調べていないことについては、なにもいえません。
よって、06行目はインチキのウソです。
13行目 (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
06行目はインチキのウソです。
インチキのウソは証拠にならないので、x^n+y^n=z^nのx,y,zが有理数の場合があるかどうかわかりません。
よって、13行目からいえることはなにもありません。
74日高
2021/03/05(金) 06:54:33.89ID:oiQwpH62 >69
AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 07:14:55.34ID:yj0UnXnz
2×3も3×2も同じ6なのに結論が違うのか
さすが日高、実に不可思議だ
さすが日高、実に不可思議だ
2021/03/05(金) 07:16:13.37ID:yj0UnXnz
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
2021/03/05(金) 07:32:01.35ID:F3YWjIOX
>>45
> >43
> x:y:z = 有理数:有理数:有理数 ...(イ)
> になりますか?
>
> なりません。
x:y:z = 有理数:有理数:有理数 ...(イ)
を調べていないという事ですか。
しかしそうすると、 x^n+y^n=(x+r)^n…(1) で
x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)
の中に、フェルマーの解が隠れているかもしれないのでは?
> >43
> x:y:z = 有理数:有理数:有理数 ...(イ)
> になりますか?
>
> なりません。
x:y:z = 有理数:有理数:有理数 ...(イ)
を調べていないという事ですか。
しかしそうすると、 x^n+y^n=(x+r)^n…(1) で
x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)
の中に、フェルマーの解が隠れているかもしれないのでは?
2021/03/05(金) 07:39:38.40ID:ueuVFCmp
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 07:40:43.58ID:ueuVFCmp
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/05(金) 07:41:23.41ID:ueuVFCmp
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 07:42:34.80ID:ueuVFCmp
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 07:43:15.36ID:ueuVFCmp
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/05(金) 07:44:23.40ID:ueuVFCmp
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 07:45:26.98ID:ueuVFCmp
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 07:46:11.98ID:ueuVFCmp
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 08:02:11.44ID:ueuVFCmp
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 08:30:24.46ID:ueuVFCmp
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 08:31:47.36ID:ueuVFCmp
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 08:33:05.37ID:ueuVFCmp
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
90日高
2021/03/05(金) 09:20:39.18ID:YKio0ytF >73
たとえば、x,y,zが無理数になるパターンを、06行目までに調べていません。
調べていないことについては、なにもいえません。
x,y,zが無理数になるパターンは、可能性としては、あるかもしれません。
ただ、x,y,zが有理数になるパターンは、確実に、ありません。
たとえば、x,y,zが無理数になるパターンを、06行目までに調べていません。
調べていないことについては、なにもいえません。
x,y,zが無理数になるパターンは、可能性としては、あるかもしれません。
ただ、x,y,zが有理数になるパターンは、確実に、ありません。
91日高
2021/03/05(金) 09:24:40.52ID:YKio0ytF >77
しかしそうすると、 x^n+y^n=(x+r)^n…(1) で
x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)
の中に、フェルマーの解が隠れているかもしれないのでは?
x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)となりません。
(3)のyを有理数とすると、xは無理数となります。
しかしそうすると、 x^n+y^n=(x+r)^n…(1) で
x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)
の中に、フェルマーの解が隠れているかもしれないのでは?
x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)となりません。
(3)のyを有理数とすると、xは無理数となります。
92日高
2021/03/05(金) 09:51:22.79ID:YKio0ytF 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
93日高
2021/03/05(金) 09:52:56.88ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
94日高
2021/03/05(金) 09:54:52.15ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
95日高
2021/03/05(金) 09:59:54.35ID:YKio0ytF >76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/05(金) 10:02:16.68ID:F3YWjIOX
「恣意的に」って、悪い意味の言葉だよ。
2021/03/05(金) 10:47:00.87ID:ueuVFCmp
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/05(金) 10:47:46.81ID:ueuVFCmp
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/05(金) 10:48:24.15ID:ueuVFCmp
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
100132人目の素数さん
2021/03/05(金) 10:48:59.38ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
101132人目の素数さん
2021/03/05(金) 10:49:40.55ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
102132人目の素数さん
2021/03/05(金) 10:50:31.76ID:ueuVFCmp 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
103132人目の素数さん
2021/03/05(金) 10:51:12.57ID:ueuVFCmp 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
104132人目の素数さん
2021/03/05(金) 11:15:55.96ID:F3YWjIOX >>91
> >77
> しかしそうすると、 x^n+y^n=(x+r)^n…(1) で
> x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)
> の中に、フェルマーの解が隠れているかもしれないのでは?
>
> x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)となりません。
> (3)のyを有理数とすると、xは無理数となります。
分かりました。では、
x:y:z = 無理数:無理数:無理数 ...(ハ)
のパターンについての証明を教えてください。
> >77
> しかしそうすると、 x^n+y^n=(x+r)^n…(1) で
> x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)
> の中に、フェルマーの解が隠れているかもしれないのでは?
>
> x:y:z(=x+r) = 有理数:有理数:有理数 ...(イ)となりません。
> (3)のyを有理数とすると、xは無理数となります。
分かりました。では、
x:y:z = 無理数:無理数:無理数 ...(ハ)
のパターンについての証明を教えてください。
105日高
2021/03/05(金) 12:02:06.46ID:YKio0ytF >104
x:y:z = 無理数:無理数:無理数 ...(ハ)
のパターンについての証明を教えてください。
x:y:z = 無理数:無理数:無理数 ...(ハ)が、整数比となるならば、
x,y,zは、有理数の組み合わせが、存在することに、なります。
x:y:z = 無理数:無理数:無理数 ...(ハ)
のパターンについての証明を教えてください。
x:y:z = 無理数:無理数:無理数 ...(ハ)が、整数比となるならば、
x,y,zは、有理数の組み合わせが、存在することに、なります。
106日高
2021/03/05(金) 12:04:58.00ID:YKio0ytF 【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
107日高
2021/03/05(金) 12:05:36.85ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
108日高
2021/03/05(金) 12:07:40.43ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
109日高
2021/03/05(金) 12:09:56.82ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
110132人目の素数さん
2021/03/05(金) 12:14:54.21ID:ueuVFCmp 106 名前:日高[] 投稿日:2021/03/05(金) 12:04:58.00 ID:YKio0ytF [8/11]
【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
107 名前:日高[] 投稿日:2021/03/05(金) 12:05:36.85 ID:YKio0ytF [9/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
108 名前:日高[] 投稿日:2021/03/05(金) 12:07:40.43 ID:YKio0ytF [10/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
109 名前:日高[] 投稿日:2021/03/05(金) 12:09:56.82 ID:YKio0ytF [11/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
107 名前:日高[] 投稿日:2021/03/05(金) 12:05:36.85 ID:YKio0ytF [9/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
108 名前:日高[] 投稿日:2021/03/05(金) 12:07:40.43 ID:YKio0ytF [10/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
109 名前:日高[] 投稿日:2021/03/05(金) 12:09:56.82 ID:YKio0ytF [11/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
111132人目の素数さん
2021/03/05(金) 12:15:24.52ID:ueuVFCmp 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
112132人目の素数さん
2021/03/05(金) 12:15:56.98ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
113132人目の素数さん
2021/03/05(金) 12:16:38.25ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
114日高
2021/03/05(金) 12:18:31.83ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
115日高
2021/03/05(金) 12:23:29.36ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
116132人目の素数さん
2021/03/05(金) 12:35:27.23ID:ueuVFCmp 114 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 12:18:31.83 ID:YKio0ytF [12/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
115 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 12:23:29.36 ID:YKio0ytF [13/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
115 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 12:23:29.36 ID:YKio0ytF [13/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
117132人目の素数さん
2021/03/05(金) 12:35:59.39ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
118132人目の素数さん
2021/03/05(金) 12:36:42.25ID:ueuVFCmp 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
119日高
2021/03/05(金) 12:58:51.51ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
120日高
2021/03/05(金) 16:14:59.90ID:YKio0ytF 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
121日高
2021/03/05(金) 16:16:04.62ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
122日高
2021/03/05(金) 16:16:48.56ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
123日高
2021/03/05(金) 16:17:37.28ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
124日高
2021/03/05(金) 18:06:27.67ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
125日高
2021/03/05(金) 18:07:18.40ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
126132人目の素数さん
2021/03/05(金) 18:30:03.94ID:ueuVFCmp 119 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 12:58:51.51 ID:YKio0ytF [14/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
120 名前:日高[] 投稿日:2021/03/05(金) 16:14:59.90 ID:YKio0ytF [15/20]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
121 名前:日高[] 投稿日:2021/03/05(金) 16:16:04.62 ID:YKio0ytF [16/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
120 名前:日高[] 投稿日:2021/03/05(金) 16:14:59.90 ID:YKio0ytF [15/20]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
121 名前:日高[] 投稿日:2021/03/05(金) 16:16:04.62 ID:YKio0ytF [16/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
127132人目の素数さん
2021/03/05(金) 18:30:32.40ID:ueuVFCmp 122 名前:日高[] 投稿日:2021/03/05(金) 16:16:48.56 ID:YKio0ytF [17/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
123 名前:日高[] 投稿日:2021/03/05(金) 16:17:37.28 ID:YKio0ytF [18/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
124 名前:日高[] 投稿日:2021/03/05(金) 18:06:27.67 ID:YKio0ytF [19/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
125 名前:日高[] 投稿日:2021/03/05(金) 18:07:18.40 ID:YKio0ytF [20/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
123 名前:日高[] 投稿日:2021/03/05(金) 16:17:37.28 ID:YKio0ytF [18/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
124 名前:日高[] 投稿日:2021/03/05(金) 18:06:27.67 ID:YKio0ytF [19/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
125 名前:日高[] 投稿日:2021/03/05(金) 18:07:18.40 ID:YKio0ytF [20/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
128132人目の素数さん
2021/03/05(金) 18:32:02.00ID:ueuVFCmp 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
129132人目の素数さん
2021/03/05(金) 18:32:49.15ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
130132人目の素数さん
2021/03/05(金) 18:33:35.46ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
131132人目の素数さん
2021/03/05(金) 18:34:15.85ID:ueuVFCmp 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
132132人目の素数さん
2021/03/05(金) 18:35:01.44ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
133132人目の素数さん
2021/03/05(金) 18:36:28.44ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
134132人目の素数さん
2021/03/05(金) 18:44:55.22ID:F3YWjIOX >>105
> >104
> x:y:z = 無理数:無理数:無理数 ...(ハ)
> のパターンについての証明を教えてください。
>
> x:y:z = 無理数:無理数:無理数 ...(ハ)が、整数比となるならば、
> x,y,zは、有理数の組み合わせが、存在することに、なります。
それで、その有理数の組み合わせがフェルマーの解にならないことは
どうやって分かりますか?
> >104
> x:y:z = 無理数:無理数:無理数 ...(ハ)
> のパターンについての証明を教えてください。
>
> x:y:z = 無理数:無理数:無理数 ...(ハ)が、整数比となるならば、
> x,y,zは、有理数の組み合わせが、存在することに、なります。
それで、その有理数の組み合わせがフェルマーの解にならないことは
どうやって分かりますか?
135日高
2021/03/05(金) 19:17:31.93ID:YKio0ytF >134
それで、その有理数の組み合わせがフェルマーの解にならないことは
どうやって分かりますか?
フェルマーの最終定理とは、有理数の組み合わせがない。
という定理です。
それで、その有理数の組み合わせがフェルマーの解にならないことは
どうやって分かりますか?
フェルマーの最終定理とは、有理数の組み合わせがない。
という定理です。
136132人目の素数さん
2021/03/05(金) 19:19:54.72ID:F3YWjIOX >>135
> >134
> それで、その有理数の組み合わせがフェルマーの解にならないことは
> どうやって分かりますか?
>
> フェルマーの最終定理とは、有理数の組み合わせがない。
> という定理です。
いやですから、その証明を教えてください。
> >134
> それで、その有理数の組み合わせがフェルマーの解にならないことは
> どうやって分かりますか?
>
> フェルマーの最終定理とは、有理数の組み合わせがない。
> という定理です。
いやですから、その証明を教えてください。
137日高
2021/03/05(金) 19:20:39.53ID:YKio0ytF 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
138日高
2021/03/05(金) 19:21:25.02ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
139日高
2021/03/05(金) 19:22:44.83ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
140日高
2021/03/05(金) 19:23:28.12ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
141日高
2021/03/05(金) 19:24:16.92ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
142日高
2021/03/05(金) 19:25:02.91ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
143132人目の素数さん
2021/03/05(金) 19:29:48.03ID:ueuVFCmp 137 名前:日高[] 投稿日:2021/03/05(金) 19:20:39.53 ID:YKio0ytF [22/27]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
138 名前:日高[] 投稿日:2021/03/05(金) 19:21:25.02 ID:YKio0ytF [23/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
139 名前:日高[] 投稿日:2021/03/05(金) 19:22:44.83 ID:YKio0ytF [24/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
140 名前:日高[] 投稿日:2021/03/05(金) 19:23:28.12 ID:YKio0ytF [25/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
141 名前:日高[] 投稿日:2021/03/05(金) 19:24:16.92 ID:YKio0ytF [26/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
142 名前:日高[] 投稿日:2021/03/05(金) 19:25:02.91 ID:YKio0ytF [27/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
138 名前:日高[] 投稿日:2021/03/05(金) 19:21:25.02 ID:YKio0ytF [23/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
139 名前:日高[] 投稿日:2021/03/05(金) 19:22:44.83 ID:YKio0ytF [24/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
140 名前:日高[] 投稿日:2021/03/05(金) 19:23:28.12 ID:YKio0ytF [25/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
141 名前:日高[] 投稿日:2021/03/05(金) 19:24:16.92 ID:YKio0ytF [26/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
142 名前:日高[] 投稿日:2021/03/05(金) 19:25:02.91 ID:YKio0ytF [27/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
144132人目の素数さん
2021/03/05(金) 19:30:18.87ID:ueuVFCmp 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
145132人目の素数さん
2021/03/05(金) 19:31:09.54ID:ueuVFCmp 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
146日高
2021/03/05(金) 19:31:15.56ID:YKio0ytF >137
いやですから、その証明を教えてください。
137を見てください。
いやですから、その証明を教えてください。
137を見てください。
147132人目の素数さん
2021/03/05(金) 19:32:01.46ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
148132人目の素数さん
2021/03/05(金) 19:32:45.06ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
149132人目の素数さん
2021/03/05(金) 19:33:59.99ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
150132人目の素数さん
2021/03/05(金) 19:35:07.71ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
151132人目の素数さん
2021/03/05(金) 19:35:52.94ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
152132人目の素数さん
2021/03/05(金) 19:36:55.06ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
153日高
2021/03/05(金) 19:41:58.84ID:YKio0ytF 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
154日高
2021/03/05(金) 19:42:47.50ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
155日高
2021/03/05(金) 19:43:35.86ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
156日高
2021/03/05(金) 19:44:19.17ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
157日高
2021/03/05(金) 19:45:24.91ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
158日高
2021/03/05(金) 19:46:26.21ID:YKio0ytF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
159132人目の素数さん
2021/03/05(金) 20:31:43.70ID:vHFFJoLS160132人目の素数さん
2021/03/05(金) 20:44:23.08ID:ueuVFCmp 153 名前:日高[] 投稿日:2021/03/05(金) 19:41:58.84 ID:YKio0ytF [29/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
154 名前:日高[] 投稿日:2021/03/05(金) 19:42:47.50 ID:YKio0ytF [30/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
155 名前:日高[] 投稿日:2021/03/05(金) 19:43:35.86 ID:YKio0ytF [31/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
156 名前:日高[] 投稿日:2021/03/05(金) 19:44:19.17 ID:YKio0ytF [32/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
157 名前:日高[] 投稿日:2021/03/05(金) 19:45:24.91 ID:YKio0ytF [33/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
158 名前:日高[] 投稿日:2021/03/05(金) 19:46:26.21 ID:YKio0ytF [34/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
154 名前:日高[] 投稿日:2021/03/05(金) 19:42:47.50 ID:YKio0ytF [30/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
155 名前:日高[] 投稿日:2021/03/05(金) 19:43:35.86 ID:YKio0ytF [31/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
156 名前:日高[] 投稿日:2021/03/05(金) 19:44:19.17 ID:YKio0ytF [32/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
157 名前:日高[] 投稿日:2021/03/05(金) 19:45:24.91 ID:YKio0ytF [33/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
158 名前:日高[] 投稿日:2021/03/05(金) 19:46:26.21 ID:YKio0ytF [34/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
161132人目の素数さん
2021/03/05(金) 20:44:51.43ID:ueuVFCmp 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
162132人目の素数さん
2021/03/05(金) 20:46:35.12ID:ueuVFCmp 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
163132人目の素数さん
2021/03/05(金) 20:48:10.18ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
164132人目の素数さん
2021/03/05(金) 20:49:07.04ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
165132人目の素数さん
2021/03/05(金) 20:49:31.69ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
166132人目の素数さん
2021/03/05(金) 23:11:23.85ID:fL8FPsM0 >>153
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目 (3)はyを有理数とすると、xは無理数となる。
までに、Aグループに有理数比の解があるかどうか、調べてないので
(3)のすべての解を調べたことに、なりません。
たとえば、x,y,zが無理数になるパターンを、06行目までに調べていません。
x,y,zが無理数になるパターンは、可能性としては、あるかもしれません。
あるかもしれないなら、ないとは言えません。
よって、06行目はインチキのウソです。
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目 (3)はyを有理数とすると、xは無理数となる。
までに、Aグループに有理数比の解があるかどうか、調べてないので
(3)のすべての解を調べたことに、なりません。
たとえば、x,y,zが無理数になるパターンを、06行目までに調べていません。
x,y,zが無理数になるパターンは、可能性としては、あるかもしれません。
あるかもしれないなら、ないとは言えません。
よって、06行目はインチキのウソです。
167132人目の素数さん
2021/03/05(金) 23:16:14.11ID:ueuVFCmp 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
168132人目の素数さん
2021/03/05(金) 23:16:45.17ID:ueuVFCmp 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
169132人目の素数さん
2021/03/05(金) 23:18:45.26ID:ueuVFCmp 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
170132人目の素数さん
2021/03/05(金) 23:19:27.93ID:ueuVFCmp 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
171132人目の素数さん
2021/03/06(土) 00:07:17.03ID:qIG4IMSW > >AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
> AB=2*3のときは、A=2,B=3です。
> AB=3*2のときは、A=3,B=2です。
AB=2*3であると同時にAB=3*2なのだから、
A=2,B=3であると同時にA=3,B=2でなければならない。
もちろんそんなことはありえない。
これはひどいな、論理的な思考がまったくできてない。
> AB=2*3のときは、A=2,B=3です。
> AB=3*2のときは、A=3,B=2です。
AB=2*3であると同時にAB=3*2なのだから、
A=2,B=3であると同時にA=3,B=2でなければならない。
もちろんそんなことはありえない。
これはひどいな、論理的な思考がまったくできてない。
172132人目の素数さん
2021/03/06(土) 07:38:20.86ID:HfRZEFmr173日高
2021/03/06(土) 07:47:05.39ID:m6XkTfq6 >166
あるかもしれないなら、ないとは言えません。
x,y,zが無理数で整数比になる場合があるかもしれませんが、
確実に、x,y,zが有理数となることは、ありません。
あるかもしれないなら、ないとは言えません。
x,y,zが無理数で整数比になる場合があるかもしれませんが、
確実に、x,y,zが有理数となることは、ありません。
174132人目の素数さん
2021/03/06(土) 07:55:29.86ID:Dr2IUd1R >>173
> >166
> あるかもしれないなら、ないとは言えません。
>
> x,y,zが無理数で整数比になる場合があるかもしれませんが、
> 確実に、x,y,zが有理数となることは、ありません。
根拠も書かずに主張するなよ
そもそもそのx,y,zはなんのx,y,zなんだ?
あいまいな書き方では逃げてるようにしか見えないぞ
そもそも何を前提に何を主張してるのかがあやふやなままなんだろうが
> >166
> あるかもしれないなら、ないとは言えません。
>
> x,y,zが無理数で整数比になる場合があるかもしれませんが、
> 確実に、x,y,zが有理数となることは、ありません。
根拠も書かずに主張するなよ
そもそもそのx,y,zはなんのx,y,zなんだ?
あいまいな書き方では逃げてるようにしか見えないぞ
そもそも何を前提に何を主張してるのかがあやふやなままなんだろうが
175日高
2021/03/06(土) 08:01:40.18ID:m6XkTfq6 >171
これはひどいな、論理的な思考がまったくできてない。
どちらも、あるということです。
これはひどいな、論理的な思考がまったくできてない。
どちらも、あるということです。
176日高
2021/03/06(土) 08:06:22.06ID:m6XkTfq6 >172
で、その有理数の組み合わせがフェルマーの解にならないことは
どうやって分かりますか? と聞いています。
有理数の組み合わせは、ないということです。
フェルマーの解とは?ことばの意味が、はっきりわかりません。
で、その有理数の組み合わせがフェルマーの解にならないことは
どうやって分かりますか? と聞いています。
有理数の組み合わせは、ないということです。
フェルマーの解とは?ことばの意味が、はっきりわかりません。
177132人目の素数さん
2021/03/06(土) 08:08:37.60ID:hsYShJ3U178日高
2021/03/06(土) 08:10:17.32ID:m6XkTfq6 >174
そもそもそのx,y,zはなんのx,y,zなんだ?
あいまいな書き方では逃げてるようにしか見えないぞ
1を、見て下さい。
理解不能な部分については、質問お願いします。
そもそもそのx,y,zはなんのx,y,zなんだ?
あいまいな書き方では逃げてるようにしか見えないぞ
1を、見て下さい。
理解不能な部分については、質問お願いします。
179日高
2021/03/06(土) 08:15:48.19ID:m6XkTfq6 >177
すべてがあやふやで論理もわからない。
1を、見て下さい。
理解不能な部分については、質問お願いします。
すべてがあやふやで論理もわからない。
1を、見て下さい。
理解不能な部分については、質問お願いします。
180日高
2021/03/06(土) 08:21:38.93ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
181132人目の素数さん
2021/03/06(土) 08:22:04.80ID:mfmFYKa6 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
182日高
2021/03/06(土) 08:22:27.84ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
183132人目の素数さん
2021/03/06(土) 08:22:32.77ID:mfmFYKa6 180 名前:日高[] 投稿日:2021/03/06(土) 08:21:38.93 ID:m6XkTfq6 [6/6]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
184日高
2021/03/06(土) 08:23:08.55ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
185132人目の素数さん
2021/03/06(土) 08:23:34.87ID:mfmFYKa6 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
186132人目の素数さん
2021/03/06(土) 08:24:01.78ID:mfmFYKa6 184 名前:日高[] 投稿日:2021/03/06(土) 08:23:08.55 ID:m6XkTfq6 [8/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
187132人目の素数さん
2021/03/06(土) 08:25:16.51ID:mfmFYKa6 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
188132人目の素数さん
2021/03/06(土) 08:26:26.11ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
189132人目の素数さん
2021/03/06(土) 08:27:54.62ID:mfmFYKa6 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
190132人目の素数さん
2021/03/06(土) 08:29:27.23ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
191132人目の素数さん
2021/03/06(土) 08:30:31.42ID:mfmFYKa6 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
192132人目の素数さん
2021/03/06(土) 08:33:12.39ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
193日高
2021/03/06(土) 08:37:47.02ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
194日高
2021/03/06(土) 08:38:40.10ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
195日高
2021/03/06(土) 08:39:31.92ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
196132人目の素数さん
2021/03/06(土) 08:43:12.71ID:HfRZEFmr >>176
> >172
> で、その有理数の組み合わせがフェルマーの解にならないことは
> どうやって分かりますか? と聞いています。
>
> 有理数の組み合わせは、ないということです。
>
> フェルマーの解とは?ことばの意味が、はっきりわかりません。
フェルマーの解とは、 x^n+y^n=z^n の解という意味です。
式で説明します。
>>15 をお借りします。
> (3)のx,yが無理数の場合は、x=sw、y=twとおく。
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
> 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
> s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
> (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
ここまでが(>>105)の内容だと思います。
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
> >172
> で、その有理数の組み合わせがフェルマーの解にならないことは
> どうやって分かりますか? と聞いています。
>
> 有理数の組み合わせは、ないということです。
>
> フェルマーの解とは?ことばの意味が、はっきりわかりません。
フェルマーの解とは、 x^n+y^n=z^n の解という意味です。
式で説明します。
>>15 をお借りします。
> (3)のx,yが無理数の場合は、x=sw、y=twとおく。
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
> 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
> s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
> (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
ここまでが(>>105)の内容だと思います。
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
197132人目の素数さん
2021/03/06(土) 08:44:05.79ID:Dr2IUd1R >>175
> >171
> これはひどいな、論理的な思考がまったくできてない。
>
> どちらも、あるということです。
どちらもあるのなら、勝手に値を決めることはできないし、やってはいけないんだよ
A×B=2×3=3×2が成立しているとき、
A=2であるならばA=2,B=3が成立する
A=3であるならばA=3,B=2が成立する
B=2であるならばA=3,B=2が成立する
B=3であるならばA=2,B=3が成立する
このようにAあるいはBの値を定める(仮定を追加する)ことでもう一方の値を定められる、と主張することはできる
しかし、AあるいはBの値を定める(仮定を追加する)ことなくA,Bがこれこれの値を取る、などという主張は許されん
やる奴(つまり日高)は数学の証明というものについてまったく理解がないと言える
> >171
> これはひどいな、論理的な思考がまったくできてない。
>
> どちらも、あるということです。
どちらもあるのなら、勝手に値を決めることはできないし、やってはいけないんだよ
A×B=2×3=3×2が成立しているとき、
A=2であるならばA=2,B=3が成立する
A=3であるならばA=3,B=2が成立する
B=2であるならばA=3,B=2が成立する
B=3であるならばA=2,B=3が成立する
このようにAあるいはBの値を定める(仮定を追加する)ことでもう一方の値を定められる、と主張することはできる
しかし、AあるいはBの値を定める(仮定を追加する)ことなくA,Bがこれこれの値を取る、などという主張は許されん
やる奴(つまり日高)は数学の証明というものについてまったく理解がないと言える
198日高
2021/03/06(土) 08:46:04.46ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
199日高
2021/03/06(土) 08:49:37.41ID:m6XkTfq6 >196
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
s^n+t^n=u^n…(C) が成立するかどうかは、不明です。(この時点では)
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
s^n+t^n=u^n…(C) が成立するかどうかは、不明です。(この時点では)
200132人目の素数さん
2021/03/06(土) 08:51:21.94ID:mfmFYKa6 194 名前:日高[] 投稿日:2021/03/06(土) 08:38:40.10 ID:m6XkTfq6 [10/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
195 名前:日高[] 投稿日:2021/03/06(土) 08:39:31.92 ID:m6XkTfq6 [11/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
198 名前:日高[] 投稿日:2021/03/06(土) 08:46:04.46 ID:m6XkTfq6 [12/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
199 名前:日高[] 投稿日:2021/03/06(土) 08:49:37.41 ID:m6XkTfq6 [13/13]
>196
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
s^n+t^n=u^n…(C) が成立するかどうかは、不明です。(この時点では)
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
195 名前:日高[] 投稿日:2021/03/06(土) 08:39:31.92 ID:m6XkTfq6 [11/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
198 名前:日高[] 投稿日:2021/03/06(土) 08:46:04.46 ID:m6XkTfq6 [12/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
199 名前:日高[] 投稿日:2021/03/06(土) 08:49:37.41 ID:m6XkTfq6 [13/13]
>196
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
s^n+t^n=u^n…(C) が成立するかどうかは、不明です。(この時点では)
201132人目の素数さん
2021/03/06(土) 08:51:43.23ID:mfmFYKa6 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
202日高
2021/03/06(土) 08:52:57.14ID:m6XkTfq6 >197
どちらもあるのなら、勝手に値を決めることはできないし、やってはいけないんだよ
値を、選んでいます。決めてはいません。
どちらもあるのなら、勝手に値を決めることはできないし、やってはいけないんだよ
値を、選んでいます。決めてはいません。
203日高
2021/03/06(土) 08:54:23.00ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
204132人目の素数さん
2021/03/06(土) 08:54:23.84ID:Dr2IUd1R 値を選んでる=決めている
205132人目の素数さん
2021/03/06(土) 08:54:44.27ID:hsYShJ3U >>179
まず、数学の証明についてちゃんと勉強してください。
今までのやりとりから、あなたが証明とは何か全く理解できていないことは明らかです。
数学の勉強をしてないでしょ?
簡単だから勉強しなくてもわかる、なんてことはありません。
まず、数学の証明についてちゃんと勉強してください。
今までのやりとりから、あなたが証明とは何か全く理解できていないことは明らかです。
数学の勉強をしてないでしょ?
簡単だから勉強しなくてもわかる、なんてことはありません。
206132人目の素数さん
2021/03/06(土) 08:55:32.01ID:mfmFYKa6 203 名前:日高[] 投稿日:2021/03/06(土) 08:54:23.00 ID:m6XkTfq6 [15/15]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
207日高
2021/03/06(土) 08:58:06.80ID:m6XkTfq6 >204
値を選んでる=決めている
値を選んでるは、いくつかのうち、ひとつを取り出すという意味です。
決めているは、それしかないという意味です。
値を選んでる=決めている
値を選んでるは、いくつかのうち、ひとつを取り出すという意味です。
決めているは、それしかないという意味です。
208日高
2021/03/06(土) 09:00:36.08ID:m6XkTfq6 >205
今までのやりとりから、あなたが証明とは何か全く理解できていないことは明らかです。
どの部分から、そのことが、いえるでしょうか?
今までのやりとりから、あなたが証明とは何か全く理解できていないことは明らかです。
どの部分から、そのことが、いえるでしょうか?
209日高
2021/03/06(土) 09:01:43.10ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
210132人目の素数さん
2021/03/06(土) 09:02:21.37ID:hsYShJ3U >>208
全部です。
全部です。
211日高
2021/03/06(土) 09:02:53.79ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
212132人目の素数さん
2021/03/06(土) 09:04:07.10ID:Dr2IUd1R213日高
2021/03/06(土) 09:05:05.47ID:m6XkTfq6 >210
全部です。
1の、1行目からでしょうか?
全部です。
1の、1行目からでしょうか?
214132人目の素数さん
2021/03/06(土) 09:05:38.85ID:Dr2IUd1R んー、結局、日高のやってるのは数学じゃなくて言葉遊びだね
数学やりたいなら学び直してこい、としか言えん
数学やりたいなら学び直してこい、としか言えん
215132人目の素数さん
2021/03/06(土) 09:08:27.45ID:mfmFYKa6 209 名前:日高[] 投稿日:2021/03/06(土) 09:01:43.10 ID:m6XkTfq6 [18/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
211 名前:日高[] 投稿日:2021/03/06(土) 09:02:53.79 ID:m6XkTfq6 [19/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
211 名前:日高[] 投稿日:2021/03/06(土) 09:02:53.79 ID:m6XkTfq6 [19/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
216日高
2021/03/06(土) 09:08:47.93ID:m6XkTfq6 >212
そりゃただの言葉遊びだ
やるのは、値を一つ選んで、その場合について考えるってことだろう?
その「場合」の中では選んだ値からは変えられないんだから「決めている」のとなんの変わりもないよ
どういう意味でしょうか?
そりゃただの言葉遊びだ
やるのは、値を一つ選んで、その場合について考えるってことだろう?
その「場合」の中では選んだ値からは変えられないんだから「決めている」のとなんの変わりもないよ
どういう意味でしょうか?
217132人目の素数さん
2021/03/06(土) 09:08:48.99ID:SDmaJhTS >>213
一行目から嘘だからね。
一行目から嘘だからね。
218132人目の素数さん
2021/03/06(土) 09:09:04.82ID:mfmFYKa6 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
219132人目の素数さん
2021/03/06(土) 09:09:29.98ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
220132人目の素数さん
2021/03/06(土) 09:10:13.20ID:mfmFYKa6 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
221132人目の素数さん
2021/03/06(土) 09:10:40.57ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
222日高
2021/03/06(土) 09:11:08.52ID:m6XkTfq6 >217
一行目から嘘だからね。
一行目の、どの部分が、嘘でしょうか?
一行目から嘘だからね。
一行目の、どの部分が、嘘でしょうか?
2021/03/06(土) 09:12:02.62ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
224132人目の素数さん
2021/03/06(土) 09:12:19.86ID:mfmFYKa6 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
225恣意的にr=2とします
2021/03/06(土) 09:13:15.82ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
226日高
2021/03/06(土) 09:13:28.14ID:m6XkTfq6 >214
んー、結局、日高のやってるのは数学じゃなくて言葉遊びだね
数学やりたいなら学び直してこい、としか言えん
どの部分が、言葉遊びでしょうか?
んー、結局、日高のやってるのは数学じゃなくて言葉遊びだね
数学やりたいなら学び直してこい、としか言えん
どの部分が、言葉遊びでしょうか?
227日高
2021/03/06(土) 09:14:59.54ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2021/03/06(土) 09:15:52.35ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
229日高
2021/03/06(土) 09:16:03.08ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
230日高
2021/03/06(土) 09:17:03.62ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
231132人目の素数さん
2021/03/06(土) 09:17:13.59ID:mfmFYKa6 227 名前:日高[] 投稿日:2021/03/06(土) 09:14:59.54 ID:m6XkTfq6 [24/24]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
232132人目の素数さん
2021/03/06(土) 09:17:52.21ID:mfmFYKa6 229 名前:日高[] 投稿日:2021/03/06(土) 09:16:03.08 ID:m6XkTfq6 [25/26]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
230 名前:日高[] 投稿日:2021/03/06(土) 09:17:03.62 ID:m6XkTfq6 [26/26]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
230 名前:日高[] 投稿日:2021/03/06(土) 09:17:03.62 ID:m6XkTfq6 [26/26]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
233恣意的にr=2とします
2021/03/06(土) 09:18:30.90ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
234132人目の素数さん
2021/03/06(土) 09:18:47.34ID:SDmaJhTS2021/03/06(土) 09:19:02.97ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
236日高
2021/03/06(土) 09:19:25.42ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
237132人目の素数さん
2021/03/06(土) 09:19:52.37ID:mfmFYKa6 236 名前:日高[] 投稿日:2021/03/06(土) 09:19:25.42 ID:m6XkTfq6 [27/27]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
238日高
2021/03/06(土) 09:21:31.74ID:m6XkTfq6 >234
他人のしてきを無視したり誤魔化す人に質問する権利はありません。
どの部分のことでしょうか?
他人のしてきを無視したり誤魔化す人に質問する権利はありません。
どの部分のことでしょうか?
239恣意的にr=2とします
2021/03/06(土) 09:29:53.36ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/06(土) 09:30:25.05ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
241恣意的にr=2とします
2021/03/06(土) 09:31:04.82ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
242日高
2021/03/06(土) 09:36:15.59ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
243日高
2021/03/06(土) 09:37:05.72ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
244132人目の素数さん
2021/03/06(土) 09:38:00.00ID:mfmFYKa6 242 名前:日高[] 投稿日:2021/03/06(土) 09:36:15.59 ID:m6XkTfq6 [29/30]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
243 名前:日高[] 投稿日:2021/03/06(土) 09:37:05.72 ID:m6XkTfq6 [30/30]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
243 名前:日高[] 投稿日:2021/03/06(土) 09:37:05.72 ID:m6XkTfq6 [30/30]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
245132人目の素数さん
2021/03/06(土) 09:40:10.87ID:HfRZEFmr >>199
> >196
> それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
> どうやって分かりますか?
>
> s^n+t^n=u^n…(C) が成立するかどうかは、不明です。(この時点では)
では、どの時点で s^n+t^n=u^n…(C) が成立しない事が分かりますか?
> >196
> それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
> どうやって分かりますか?
>
> s^n+t^n=u^n…(C) が成立するかどうかは、不明です。(この時点では)
では、どの時点で s^n+t^n=u^n…(C) が成立しない事が分かりますか?
2021/03/06(土) 10:07:23.63ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
247恣意的にr=2とします
2021/03/06(土) 10:19:17.56ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
248日高
2021/03/06(土) 10:25:02.38ID:m6XkTfq6 >245
では、どの時点で s^n+t^n=u^n…(C) が成立しない事が分かりますか?
1によって、わかります。
では、どの時点で s^n+t^n=u^n…(C) が成立しない事が分かりますか?
1によって、わかります。
249132人目の素数さん
2021/03/06(土) 10:26:10.95ID:o9pnsF55 >>236
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目 (3)はyを有理数とすると、xは無理数となる。
までに、Aグループに有理数比の解があるかどうか、調べてないので
(3)のすべての解を調べたことに、なりません。
たとえば、x,y,zが無理数になるパターンを、06行目までに調べていません。
> x,y,zが無理数で整数比になる場合があるかもしれませんが、
> 確実に、x,y,zが有理数となることは、ありません。
> x,y,zが無理数で整数比になる場合があるかもしれません
あるかもしれないなら、ないとは言えません。
Aグループも(3)の解なのだからそれを無視して結論を出すことはできません。
絶対にAグループを調べることが、必要です。
よって、06行目はインチキのウソです。
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目 (3)はyを有理数とすると、xは無理数となる。
までに、Aグループに有理数比の解があるかどうか、調べてないので
(3)のすべての解を調べたことに、なりません。
たとえば、x,y,zが無理数になるパターンを、06行目までに調べていません。
> x,y,zが無理数で整数比になる場合があるかもしれませんが、
> 確実に、x,y,zが有理数となることは、ありません。
> x,y,zが無理数で整数比になる場合があるかもしれません
あるかもしれないなら、ないとは言えません。
Aグループも(3)の解なのだからそれを無視して結論を出すことはできません。
絶対にAグループを調べることが、必要です。
よって、06行目はインチキのウソです。
250日高
2021/03/06(土) 10:35:25.86ID:m6XkTfq6 >249
絶対にAグループを調べることが、必要です。
どうしてでしょうか?
絶対にAグループを調べることが、必要です。
どうしてでしょうか?
251日高
2021/03/06(土) 10:39:41.13ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
252日高
2021/03/06(土) 10:40:22.74ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
253日高
2021/03/06(土) 10:41:06.51ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
254132人目の素数さん
2021/03/06(土) 10:51:59.32ID:Dr2IUd1R > どの部分が、言葉遊びでしょうか?
全部
まともな数学の証明の書き方になってないから、おとなしく中学生あたりの証明からやり直してこい
全部
まともな数学の証明の書き方になってないから、おとなしく中学生あたりの証明からやり直してこい
255日高
2021/03/06(土) 10:54:12.77ID:m6XkTfq6 >254
全部
1の一行目からでしょうか?
全部
1の一行目からでしょうか?
256132人目の素数さん
2021/03/06(土) 11:00:46.14ID:Dr2IUd1R > 1の一行目からでしょうか?
証明の1行目でrの定義すら書かずに使い始める時点で証明としてゴミであることが確定してる
だから諦めろ、お前にまともな数学なんぞ誰も期待しないから
証明の1行目でrの定義すら書かずに使い始める時点で証明としてゴミであることが確定してる
だから諦めろ、お前にまともな数学なんぞ誰も期待しないから
257日高
2021/03/06(土) 11:40:12.60ID:m6XkTfq6 >256
証明の1行目でrの定義すら書かずに
r=z-xです。
証明の1行目でrの定義すら書かずに
r=z-xです。
258132人目の素数さん
2021/03/06(土) 11:44:37.66ID:o9pnsF55259日高
2021/03/06(土) 11:49:57.63ID:m6XkTfq6 >258
> x,y,zが無理数で整数比になる場合があるかもしれません
だから。
ただ、x,y,zが有理数とならないことは、確実です。
> x,y,zが無理数で整数比になる場合があるかもしれません
だから。
ただ、x,y,zが有理数とならないことは、確実です。
260132人目の素数さん
2021/03/06(土) 12:12:58.12ID:o9pnsF55 >>259
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
Bグループに(3)のx,y,zが有理数の解がないことについて、間違っているといっている人はいません。
あなたの書いた通り
> x,y,zが無理数で整数比になる場合があるかもしれません
Aグループを調べていないので、(3)の解のうちすべてを調べたことになりません。
あるかもしれないので、(3)に整数比の解がないとは言えません。
よって、6行目はインチキでウソです。
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
Bグループに(3)のx,y,zが有理数の解がないことについて、間違っているといっている人はいません。
あなたの書いた通り
> x,y,zが無理数で整数比になる場合があるかもしれません
Aグループを調べていないので、(3)の解のうちすべてを調べたことになりません。
あるかもしれないので、(3)に整数比の解がないとは言えません。
よって、6行目はインチキでウソです。
261日高
2021/03/06(土) 12:19:29.05ID:m6XkTfq6 >260
(3)に整数比の解がないとは言えません。
そのとおりですが、ただ、有理数の解はありません。
(3)に整数比の解がないとは言えません。
そのとおりですが、ただ、有理数の解はありません。
262132人目の素数さん
2021/03/06(土) 12:21:07.21ID:g39Xaxrg263日高
2021/03/06(土) 12:21:30.74ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
264132人目の素数さん
2021/03/06(土) 12:24:37.79ID:o9pnsF55 n=2の場合で考えれば
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(4)
(4)の解は、
Aグループ:yが無理数の(4)の解
Bグループ:yが有理数の(4)の解
この2通りで、これですべてです。
Bグループに(4)のx,y,zが有理数の解はありません。
そのことは、(4)に有理数比の解がない証拠になりません。
Aグループを調べないと、(4)の解のうちすべてを調べたことになりません。
Aグループを調べるまでは、(4)に有理数比の解がないとは言えません。
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(4)
(4)の解は、
Aグループ:yが無理数の(4)の解
Bグループ:yが有理数の(4)の解
この2通りで、これですべてです。
Bグループに(4)のx,y,zが有理数の解はありません。
そのことは、(4)に有理数比の解がない証拠になりません。
Aグループを調べないと、(4)の解のうちすべてを調べたことになりません。
Aグループを調べるまでは、(4)に有理数比の解がないとは言えません。
265132人目の素数さん
2021/03/06(土) 12:28:19.97ID:o9pnsF55 >>261
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
> ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
とは、AグループにもBグループにも有理数比の解がない、という意味です。
Aグループを調べていないので、これはインチキのウソです。
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
> ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
とは、AグループにもBグループにも有理数比の解がない、という意味です。
Aグループを調べていないので、これはインチキのウソです。
266132人目の素数さん
2021/03/06(土) 12:29:20.57ID:g39Xaxrg267132人目の素数さん
2021/03/06(土) 12:46:16.65ID:mfmFYKa6 251 名前:日高[] 投稿日:2021/03/06(土) 10:39:41.13 ID:m6XkTfq6 [33/40]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
252 名前:日高[] 投稿日:2021/03/06(土) 10:40:22.74 ID:m6XkTfq6 [34/40]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
253 名前:日高[] 投稿日:2021/03/06(土) 10:41:06.51 ID:m6XkTfq6 [35/40]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
252 名前:日高[] 投稿日:2021/03/06(土) 10:40:22.74 ID:m6XkTfq6 [34/40]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
253 名前:日高[] 投稿日:2021/03/06(土) 10:41:06.51 ID:m6XkTfq6 [35/40]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
268132人目の素数さん
2021/03/06(土) 12:46:59.94ID:mfmFYKa6 263 名前:日高[] 投稿日:2021/03/06(土) 12:21:30.74 ID:m6XkTfq6 [40/40]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/06(土) 12:47:30.82ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
270132人目の素数さん
2021/03/06(土) 12:54:39.70ID:Dr2IUd1R 定義は証明の中に書け
271恣意的にr=2とします
2021/03/06(土) 13:13:57.28ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/06(土) 13:14:52.49ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
273132人目の素数さん
2021/03/06(土) 13:37:41.66ID:loM4RIbk >>171
> > >AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
> > AB=2*3のときは、A=2,B=3です。
> > AB=3*2のときは、A=3,B=2です。
>
> AB=2*3であると同時にAB=3*2なのだから、
> A=2,B=3であると同時にA=3,B=2でなければならない。
> もちろんそんなことはありえない。
> これはひどいな、論理的な思考がまったくできてない。
>>175 日高
> >171
> これはひどいな、論理的な思考がまったくできてない。
>
> どちらも、あるということです。
日高に欠けているのは「A=2,B=3です」の「です」についての理解では。
ここでは「ある」に置き換わっているし。
「です」の定義を述べてやることは不可能。
「『です』とはこれこれです」と「です」を使ってしまうから。
大人になるまでに普通は身につくもので
身につかなかった人はもうどうしようもない。
> > >AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
> > AB=2*3のときは、A=2,B=3です。
> > AB=3*2のときは、A=3,B=2です。
>
> AB=2*3であると同時にAB=3*2なのだから、
> A=2,B=3であると同時にA=3,B=2でなければならない。
> もちろんそんなことはありえない。
> これはひどいな、論理的な思考がまったくできてない。
>>175 日高
> >171
> これはひどいな、論理的な思考がまったくできてない。
>
> どちらも、あるということです。
日高に欠けているのは「A=2,B=3です」の「です」についての理解では。
ここでは「ある」に置き換わっているし。
「です」の定義を述べてやることは不可能。
「『です』とはこれこれです」と「です」を使ってしまうから。
大人になるまでに普通は身につくもので
身につかなかった人はもうどうしようもない。
274132人目の素数さん
2021/03/06(土) 14:19:16.34ID:HfRZEFmr 45 名前:日高[] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
259 名前:日高[] 投稿日:2021/03/06(土) 11:49:57.63 ID:m6XkTfq6 [38/40]
>258
> x,y,zが無理数で整数比になる場合があるかもしれません
だから。
ただ、x,y,zが有理数とならないことは、確実です。
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
259 名前:日高[] 投稿日:2021/03/06(土) 11:49:57.63 ID:m6XkTfq6 [38/40]
>258
> x,y,zが無理数で整数比になる場合があるかもしれません
だから。
ただ、x,y,zが有理数とならないことは、確実です。
275132人目の素数さん
2021/03/06(土) 14:20:17.50ID:HfRZEFmr2021/03/06(土) 14:20:29.45ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
277恣意的にr=2とします
2021/03/06(土) 14:20:53.05ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
278日高
2021/03/06(土) 14:36:05.50ID:m6XkTfq6 >270
定義は証明の中に書け
証明の中で、z=x+rとしています。
定義は証明の中に書け
証明の中で、z=x+rとしています。
279日高
2021/03/06(土) 14:39:54.66ID:m6XkTfq6 >273
「です」の定義を述べてやることは不可能。
「です」の定義を、教えてください。
「です」の定義を述べてやることは不可能。
「です」の定義を、教えてください。
280日高
2021/03/06(土) 14:43:08.21ID:m6XkTfq6 >275
よって、 s^n+t^n=u^n…(C) が成立しない事の証明に、1は使えません。
よく、意味がわかりません。詳しく説明していただけないでしょうか。
よって、 s^n+t^n=u^n…(C) が成立しない事の証明に、1は使えません。
よく、意味がわかりません。詳しく説明していただけないでしょうか。
281132人目の素数さん
2021/03/06(土) 14:46:04.92ID:Dr2IUd1R282132人目の素数さん
2021/03/06(土) 14:54:28.31ID:HfRZEFmr283日高
2021/03/06(土) 14:54:38.63ID:m6XkTfq6 >281
それは定義しているとは言わない、言えない
だからゴミなんだ
z=x+rのz,x,rは実数です。
それは定義しているとは言わない、言えない
だからゴミなんだ
z=x+rのz,x,rは実数です。
284日高
2021/03/06(土) 14:59:27.14ID:m6XkTfq6285132人目の素数さん
2021/03/06(土) 15:04:20.83ID:HfRZEFmr286日高
2021/03/06(土) 15:15:29.48ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
287日高
2021/03/06(土) 15:16:13.47ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
288日高
2021/03/06(土) 15:16:53.95ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
289132人目の素数さん
2021/03/06(土) 15:18:58.95ID:mfmFYKa6 286 名前:日高[] 投稿日:2021/03/06(土) 15:15:29.48 ID:m6XkTfq6 [46/48]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
287 名前:日高[] 投稿日:2021/03/06(土) 15:16:13.47 ID:m6XkTfq6 [47/48]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
288 名前:日高[] 投稿日:2021/03/06(土) 15:16:53.95 ID:m6XkTfq6 [48/48]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
287 名前:日高[] 投稿日:2021/03/06(土) 15:16:13.47 ID:m6XkTfq6 [47/48]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
288 名前:日高[] 投稿日:2021/03/06(土) 15:16:53.95 ID:m6XkTfq6 [48/48]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/06(土) 15:19:37.35ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
291恣意的にr=2とします
2021/03/06(土) 15:20:09.64ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
292日高
2021/03/06(土) 15:23:45.59ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
293日高
2021/03/06(土) 15:25:15.25ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
294132人目の素数さん
2021/03/06(土) 15:27:11.82ID:mfmFYKa6 292 名前:日高[] 投稿日:2021/03/06(土) 15:23:45.59 ID:m6XkTfq6 [49/50]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
293 名前:日高[] 投稿日:2021/03/06(土) 15:25:15.25 ID:m6XkTfq6 [50/50]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
293 名前:日高[] 投稿日:2021/03/06(土) 15:25:15.25 ID:m6XkTfq6 [50/50]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
295132人目の素数さん
2021/03/06(土) 15:44:03.09ID:KJWLf5WD296132人目の素数さん
2021/03/06(土) 15:51:52.78ID:Dr2IUd1R2021/03/06(土) 15:58:29.86ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
298恣意的にr=2とします
2021/03/06(土) 15:59:07.67ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
299132人目の素数さん
2021/03/06(土) 16:12:32.14ID:o9pnsF55 >>286
n=2の場合で考えれば
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(4)
(4)の解は、
Aグループ:yが無理数の(4)の解
Bグループ:yが有理数の(4)の解
この2通りで、これですべてです。
Bグループに(4)のx,y,zが有理数の解はありません。でも、それだけでは足りません。
(4)のすべての解を調べていないので、そのことは、(4)に有理数比の解がない証拠になりません。
(4)に有理数比の解がない証拠がないので、(3)に有理数比の解がない証拠になりません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)のとき、
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
Bグループに(3)のx,y,zが有理数の解はありません。でも、それだけでは足りません。
(3)の解のすべてを調べていないので、そのことは、(3)に有理数比の解がない証拠になりません。
(3)に有理数比の解がない証拠がないので、(4)(2)(1)に有理数比の解がない証拠になりません。
n=2の場合で考えれば
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(4)
(4)の解は、
Aグループ:yが無理数の(4)の解
Bグループ:yが有理数の(4)の解
この2通りで、これですべてです。
Bグループに(4)のx,y,zが有理数の解はありません。でも、それだけでは足りません。
(4)のすべての解を調べていないので、そのことは、(4)に有理数比の解がない証拠になりません。
(4)に有理数比の解がない証拠がないので、(3)に有理数比の解がない証拠になりません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)のとき、
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
Bグループに(3)のx,y,zが有理数の解はありません。でも、それだけでは足りません。
(3)の解のすべてを調べていないので、そのことは、(3)に有理数比の解がない証拠になりません。
(3)に有理数比の解がない証拠がないので、(4)(2)(1)に有理数比の解がない証拠になりません。
2021/03/06(土) 17:17:04.56ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
301恣意的にr=2とします
2021/03/06(土) 17:17:33.32ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
302日高
2021/03/06(土) 17:33:03.94ID:m6XkTfq6 >296
繰り返すがそれは定義ではない
ことわりが無い場合は、実数です。
繰り返すがそれは定義ではない
ことわりが無い場合は、実数です。
303日高
2021/03/06(土) 17:39:19.96ID:m6XkTfq6 >299
(3)の解のすべてを調べていないので、そのことは、(3)に有理数比の解がない証拠になりません。
(3)に有理数比の解がない証拠は、ありませんが、
確実に、有理数の解は、ありません。
(3)の解のすべてを調べていないので、そのことは、(3)に有理数比の解がない証拠になりません。
(3)に有理数比の解がない証拠は、ありませんが、
確実に、有理数の解は、ありません。
304132人目の素数さん
2021/03/06(土) 17:45:44.68ID:o9pnsF55 >>303
> (3)に有理数比の解がない証拠は、ありません
(3)に有理数比の解があれば、(4)(2)(1)に有理数の解があります。
n=2の場合で考えれば
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(4)
(4)の解は、
Aグループ:yが無理数の(4)の解
Bグループ:yが有理数の(4)の解
この2通りで、これですべてです。
(4)に有理数比の解があれば、(3)に有理数の解があります。
> (3)に有理数比の解がない証拠は、ありません
(3)に有理数比の解があれば、(4)(2)(1)に有理数の解があります。
n=2の場合で考えれば
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(4)
(4)の解は、
Aグループ:yが無理数の(4)の解
Bグループ:yが有理数の(4)の解
この2通りで、これですべてです。
(4)に有理数比の解があれば、(3)に有理数の解があります。
305日高
2021/03/06(土) 17:53:25.45ID:m6XkTfq6 >304
> (3)に有理数比の解がない証拠は、ありません
(3)に有理数比の解があれば、(4)(2)(1)に有理数の解があります。
(3)に有理数比の解がない証拠は、ありませんが、
(3)に有理数の解は、確実にありません。
> (3)に有理数比の解がない証拠は、ありません
(3)に有理数比の解があれば、(4)(2)(1)に有理数の解があります。
(3)に有理数比の解がない証拠は、ありませんが、
(3)に有理数の解は、確実にありません。
306132人目の素数さん
2021/03/06(土) 17:53:48.81ID:o9pnsF55 >>304
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(4)
(4)の解は、
Aグループ:yが無理数の(4)の解
Bグループ:yが有理数の(4)の解
この2通りで、これですべてです。
(3)の解の中で、(4)の解であるものはありません。
(4)の解の中で、(3)の解であるものはありません。
(3)の解と(4)の解には、同じ解の比が同じものがあります。
(4)にx,y,zが有理数の解はありません。
しかし、(4)に有理数比の解がない証拠がないならば、
(3)に有理数の解はない、とはいえません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(a≠1)のとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(3)の解の中で、(4)の解であるものはありません。
(4)の解の中で、(3)の解であるものはありません。
(3)の解と(4)の解には、解の比が同じものがあります。
(3)にx,y,zが有理数の解はありません。
しかし、(3)に有理数比の解がない証拠がないならば、
(1)(2)(4)に有理数の解はない、とはいえません。
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(4)
(4)の解は、
Aグループ:yが無理数の(4)の解
Bグループ:yが有理数の(4)の解
この2通りで、これですべてです。
(3)の解の中で、(4)の解であるものはありません。
(4)の解の中で、(3)の解であるものはありません。
(3)の解と(4)の解には、同じ解の比が同じものがあります。
(4)にx,y,zが有理数の解はありません。
しかし、(4)に有理数比の解がない証拠がないならば、
(3)に有理数の解はない、とはいえません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(a≠1)のとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(3)の解の中で、(4)の解であるものはありません。
(4)の解の中で、(3)の解であるものはありません。
(3)の解と(4)の解には、解の比が同じものがあります。
(3)にx,y,zが有理数の解はありません。
しかし、(3)に有理数比の解がない証拠がないならば、
(1)(2)(4)に有理数の解はない、とはいえません。
307日高
2021/03/06(土) 17:55:30.56ID:m6XkTfq6 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
308日高
2021/03/06(土) 17:56:24.56ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
309132人目の素数さん
2021/03/06(土) 17:57:16.04ID:g39Xaxrg310日高
2021/03/06(土) 17:57:21.83ID:m6XkTfq6 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
311日高
2021/03/06(土) 18:01:51.84ID:m6XkTfq6 >309
そんなことは証明の何処にも書かれていない。
後付でいくらでも日高は嘘ついたり主張を変えるから無意味。
私は、そう思います。
そんなことは証明の何処にも書かれていない。
後付でいくらでも日高は嘘ついたり主張を変えるから無意味。
私は、そう思います。
312132人目の素数さん
2021/03/06(土) 18:22:44.19ID:mfmFYKa6 307 名前:日高[] 投稿日:2021/03/06(土) 17:55:30.56 ID:m6XkTfq6 [54/57]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
308 名前:日高[] 投稿日:2021/03/06(土) 17:56:24.56 ID:m6XkTfq6 [55/57]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
310 名前:日高[] 投稿日:2021/03/06(土) 17:57:21.83 ID:m6XkTfq6 [56/57]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
308 名前:日高[] 投稿日:2021/03/06(土) 17:56:24.56 ID:m6XkTfq6 [55/57]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
310 名前:日高[] 投稿日:2021/03/06(土) 17:57:21.83 ID:m6XkTfq6 [56/57]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
313132人目の素数さん
2021/03/06(土) 18:23:06.96ID:mfmFYKa6 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/06(土) 18:23:41.40ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
315恣意的にr=2とします
2021/03/06(土) 18:24:10.56ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
316132人目の素数さん
2021/03/06(土) 18:40:42.50ID:WreuVy/D >>302
> >296
> 繰り返すがそれは定義ではない
>
> ことわりが無い場合は、実数です。
そんなことを書いても定義とは言えん。
「定義する」ということがどういうことか
「定義する」ときにどのように記述するべきか
日高はまずここからして既にわかっていない、ということがよくわかる
> >296
> 繰り返すがそれは定義ではない
>
> ことわりが無い場合は、実数です。
そんなことを書いても定義とは言えん。
「定義する」ということがどういうことか
「定義する」ときにどのように記述するべきか
日高はまずここからして既にわかっていない、ということがよくわかる
317132人目の素数さん
2021/03/06(土) 19:09:37.87ID:KJWLf5WD318日高
2021/03/06(土) 19:17:12.89ID:m6XkTfq6 >306
(4)にx,y,zが有理数の解はありません。
しかし、(4)に有理数比の解がない証拠がないならば、
(3)に有理数の解はない、とはいえません。
(4)は、x^2+y^2=(x+√3)^2のみでは、ありません。
rが有理数の場合も、あります。
(4)にx,y,zが有理数の解はありません。
しかし、(4)に有理数比の解がない証拠がないならば、
(3)に有理数の解はない、とはいえません。
(4)は、x^2+y^2=(x+√3)^2のみでは、ありません。
rが有理数の場合も、あります。
319132人目の素数さん
2021/03/06(土) 19:23:57.35ID:o9pnsF55 >>318
確かに、あなたの文の(4)とは違いました。変更します。
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
(3)の解の中で、(5)の解であるものはありません。
(5)の解の中で、(3)の解であるものはありません。
(3)の解と(5)の解には、同じ解の比が同じものがあります。
(5)にx,y,zが有理数の解はありません。
しかし、(5)に有理数比の解がない証拠がないならば、
(3)に有理数の解はない、とはいえません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(a≠1)、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(3)の解の中で、(4)の解であるものはありません。
(4)の解の中で、(3)の解であるものはありません。
(3)の解と(4)の解には、解の比が同じものがあります。
(3)にx,y,zが有理数の解はありません。
しかし、(3)に有理数比の解がない証拠がないならば、
(1)(2)(4)に有理数の解はない、とはいえません。
確かに、あなたの文の(4)とは違いました。変更します。
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
(3)の解の中で、(5)の解であるものはありません。
(5)の解の中で、(3)の解であるものはありません。
(3)の解と(5)の解には、同じ解の比が同じものがあります。
(5)にx,y,zが有理数の解はありません。
しかし、(5)に有理数比の解がない証拠がないならば、
(3)に有理数の解はない、とはいえません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(a≠1)、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(3)の解の中で、(4)の解であるものはありません。
(4)の解の中で、(3)の解であるものはありません。
(3)の解と(4)の解には、解の比が同じものがあります。
(3)にx,y,zが有理数の解はありません。
しかし、(3)に有理数比の解がない証拠がないならば、
(1)(2)(4)に有理数の解はない、とはいえません。
320132人目の素数さん
2021/03/06(土) 19:32:29.15ID:MR3n/lNl321132人目の素数さん
2021/03/06(土) 19:39:55.32ID:o9pnsF55 x^2+y^2=(x+r)^2…(1)
x^2+y^2=(x+2)^2…(3)
(1)には、無理数で整数比の解があります。
(3)には、無理数で整数比の解がありません。
よって、(1)と(3)は同じものとして扱えません。別物です。
別物なので、(3)に無理数で整数比の解がないから、(1)に無理数で整数比の解がないとは言えません。
x^n+y^n=(x+r)^n…(1)
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(1)のrは、有理数にも無理数にもなります。
(3)のn^{1/(n-1)}は、n≧3のとき無理数にしかなりません。
よって、(1)と(3)は同じものとして扱えません。別物です
別物なので、(3)に有理数で整数比の解がないから、(1)に有理数で整数比の解がないとは言えません。
x^2+y^2=(x+2)^2…(3)
(1)には、無理数で整数比の解があります。
(3)には、無理数で整数比の解がありません。
よって、(1)と(3)は同じものとして扱えません。別物です。
別物なので、(3)に無理数で整数比の解がないから、(1)に無理数で整数比の解がないとは言えません。
x^n+y^n=(x+r)^n…(1)
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(1)のrは、有理数にも無理数にもなります。
(3)のn^{1/(n-1)}は、n≧3のとき無理数にしかなりません。
よって、(1)と(3)は同じものとして扱えません。別物です
別物なので、(3)に有理数で整数比の解がないから、(1)に有理数で整数比の解がないとは言えません。
322日高
2021/03/06(土) 19:49:48.63ID:m6XkTfq6 >316
「定義する」ということがどういうことか
「定義する」ときにどのように記述するべきか
よく、意味が、わかりません。どのように、すればよいのでしょうか?
「定義する」ということがどういうことか
「定義する」ときにどのように記述するべきか
よく、意味が、わかりません。どのように、すればよいのでしょうか?
323日高
2021/03/06(土) 19:53:22.64ID:m6XkTfq6 >317
誰もそんなことは聞いてないよ。
どんなことを、聞いているのでしょうか?
誰もそんなことは聞いてないよ。
どんなことを、聞いているのでしょうか?
324日高
2021/03/06(土) 20:23:38.90ID:m6XkTfq6 >319
しかし、(5)に有理数比の解がない証拠がないならば、
(3)に有理数の解はない、とはいえません。
(5)に有理数比の解はあります。証拠もあります。
(3)に有理数の解はあります。
しかし、(5)に有理数比の解がない証拠がないならば、
(3)に有理数の解はない、とはいえません。
(5)に有理数比の解はあります。証拠もあります。
(3)に有理数の解はあります。
325132人目の素数さん
2021/03/06(土) 20:29:50.53ID:W/EZ1Zab326132人目の素数さん
2021/03/06(土) 20:49:55.06ID:o9pnsF55 >>324
そうですか。では同じように
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(a≠1)、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(3)の解の中で、(4)の解であるものはありません。
(4)の解の中で、(3)の解であるものはありません。
(3)の解と(4)の解には、解の比が同じものがあります。
(3)にx,y,zが有理数の解はありません。
しかし、(3)に有理数比の解がない証拠がないならば、
(1)(2)(4)に有理数の解はない、とはいえません。
(3)に有理数の解がない証拠ではなく、
(3)に有理数比の解がない証拠を書いてください。
そうすれば(1)(2)(4)に有理数の解はないといえます。
そうですか。では同じように
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(a≠1)、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(3)の解の中で、(4)の解であるものはありません。
(4)の解の中で、(3)の解であるものはありません。
(3)の解と(4)の解には、解の比が同じものがあります。
(3)にx,y,zが有理数の解はありません。
しかし、(3)に有理数比の解がない証拠がないならば、
(1)(2)(4)に有理数の解はない、とはいえません。
(3)に有理数の解がない証拠ではなく、
(3)に有理数比の解がない証拠を書いてください。
そうすれば(1)(2)(4)に有理数の解はないといえます。
327132人目の素数さん
2021/03/06(土) 20:53:50.13ID:o9pnsF55 >>326追記
x^2+y^2=(x+√3)^2…(5)
(5)にx,y,zが有理数の解はありません。
しかし、(5)に有理数比の解はあります
つまり、(5)にx,y,zが有理数の解がないことは、(5)に有理数比の解がないことの証拠になりません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)にx,y,zが有理数の解はありません。
(3)にx,y,zが有理数の解がないことは、(3)に有理数比の解がないことの証拠になりません。
(3)に有理数比の解がない証拠を書くとき、このことを踏まえてくださいね。
x^2+y^2=(x+√3)^2…(5)
(5)にx,y,zが有理数の解はありません。
しかし、(5)に有理数比の解はあります
つまり、(5)にx,y,zが有理数の解がないことは、(5)に有理数比の解がないことの証拠になりません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)にx,y,zが有理数の解はありません。
(3)にx,y,zが有理数の解がないことは、(3)に有理数比の解がないことの証拠になりません。
(3)に有理数比の解がない証拠を書くとき、このことを踏まえてくださいね。
2021/03/06(土) 21:31:14.62ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
329恣意的にr=2とします
2021/03/06(土) 21:31:52.58ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/06(土) 22:16:11.55ID:mfmFYKa6
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
331恣意的にr=2とします
2021/03/06(土) 22:16:42.25ID:mfmFYKa6 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
332132人目の素数さん
2021/03/07(日) 01:24:20.84ID:HnDJh8OC 43 名前:132人目の素数さん[sage] 投稿日:2021/03/04(木) 18:33:46.02 ID:PJsRYT3U
>>13
> (4)(3)(2)(1)の解の比は、同じとなる。
とのことですが、このとき
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
45 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
>>13
> (4)(3)(2)(1)の解の比は、同じとなる。
とのことですが、このとき
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
45 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
333132人目の素数さん
2021/03/07(日) 01:25:57.40ID:HnDJh8OC 285 名前:132人目の素数さん[sage] 投稿日:2021/03/06(土) 15:04:20.83 ID:HfRZEFmr [7/7]
>>284
> >282
>
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れないのですよね?
>
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
> 証明(>>1)の中で「x:y:z = 無理数:無理数:無理数」は現れません。
それは、>>45
-----
45 名前:日高[] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
-----
と矛盾します。
>>284
> >282
>
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れないのですよね?
>
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
> 証明(>>1)の中で「x:y:z = 無理数:無理数:無理数」は現れません。
それは、>>45
-----
45 名前:日高[] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
-----
と矛盾します。
334132人目の素数さん
2021/03/07(日) 01:27:16.64ID:HnDJh8OC 日高氏、 >>285 に返信をお願いします。
2021/03/07(日) 08:28:16.28ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
336恣意的にr=2とします
2021/03/07(日) 08:28:50.46ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
337日高
2021/03/07(日) 08:30:39.05ID:CCs09SvA >325
君がはぐらかした質問だよ。
よく、意味がわかりません。
君がはぐらかした質問だよ。
よく、意味がわかりません。
338日高
2021/03/07(日) 08:33:32.67ID:CCs09SvA >326
(3)に有理数比の解がない証拠を書いてください。
そうすれば(1)(2)(4)に有理数の解はないといえます。
(3)に有理数比の解がない証拠は、ありません。
(3)に有理数比の解がない証拠を書いてください。
そうすれば(1)(2)(4)に有理数の解はないといえます。
(3)に有理数比の解がない証拠は、ありません。
339日高
2021/03/07(日) 08:38:36.57ID:CCs09SvA340日高
2021/03/07(日) 08:40:33.32ID:CCs09SvA 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
341132人目の素数さん
2021/03/07(日) 08:41:16.98ID:HnDJh8OC342日高
2021/03/07(日) 08:41:31.23ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
343日高
2021/03/07(日) 08:44:06.35ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
344日高
2021/03/07(日) 08:48:14.86ID:CCs09SvA >341
そんなに分かりにくくはないですがね。
申し訳ございませんが、最初から、もう一度質問おねがいします。
そんなに分かりにくくはないですがね。
申し訳ございませんが、最初から、もう一度質問おねがいします。
345日高
2021/03/07(日) 08:50:29.70ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
346132人目の素数さん
2021/03/07(日) 08:50:30.98ID:HnDJh8OC347日高
2021/03/07(日) 08:53:34.23ID:CCs09SvA348132人目の素数さん
2021/03/07(日) 08:55:08.86ID:HnDJh8OC349日高
2021/03/07(日) 08:57:01.19ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
350日高
2021/03/07(日) 08:57:53.85ID:CCs09SvA 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
351132人目の素数さん
2021/03/07(日) 09:00:47.43ID:QiCHDEWY 340 名前:日高[] 投稿日:2021/03/07(日) 08:40:33.32 ID:CCs09SvA [4/11]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
342 名前:日高[] 投稿日:2021/03/07(日) 08:41:31.23 ID:CCs09SvA [5/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
343 名前:日高[] 投稿日:2021/03/07(日) 08:44:06.35 ID:CCs09SvA [6/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
345 名前:日高[] 投稿日:2021/03/07(日) 08:50:29.70 ID:CCs09SvA [8/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
342 名前:日高[] 投稿日:2021/03/07(日) 08:41:31.23 ID:CCs09SvA [5/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
343 名前:日高[] 投稿日:2021/03/07(日) 08:44:06.35 ID:CCs09SvA [6/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
345 名前:日高[] 投稿日:2021/03/07(日) 08:50:29.70 ID:CCs09SvA [8/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
352132人目の素数さん
2021/03/07(日) 09:01:25.56ID:QiCHDEWY 349 名前:日高[] 投稿日:2021/03/07(日) 08:57:01.19 ID:CCs09SvA [10/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
350 名前:日高[] 投稿日:2021/03/07(日) 08:57:53.85 ID:CCs09SvA [11/11]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
350 名前:日高[] 投稿日:2021/03/07(日) 08:57:53.85 ID:CCs09SvA [11/11]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/07(日) 09:02:26.55ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
354恣意的にr=2とします
2021/03/07(日) 09:02:56.06ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿涛:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿涛:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
355日高
2021/03/07(日) 09:03:31.98ID:CCs09SvA >348
>>>333 にあります。
以下が内容ですが、
どの部分のことでしょうか?
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れないのですよね?
>
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
> 証明(>>1)の中で「x:y:z = 無理数:無理数:無理数」は現れません。
それは、>>45
-----
45 名前:日高[] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
-----
と矛盾します。
>>>333 にあります。
以下が内容ですが、
どの部分のことでしょうか?
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れないのですよね?
>
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
> 証明(>>1)の中で「x:y:z = 無理数:無理数:無理数」は現れません。
それは、>>45
-----
45 名前:日高[] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
>43
x:y:z = 有理数:有理数:有理数 ...(イ)
になりますか?
なりません。
-----
と矛盾します。
356日高
2021/03/07(日) 09:05:52.66ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
357132人目の素数さん
2021/03/07(日) 09:07:56.52ID:QiCHDEWY 356 名前:日高[] 投稿日:2021/03/07(日) 09:05:52.66 ID:CCs09SvA [13/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
358132人目の素数さん
2021/03/07(日) 09:12:15.67ID:HnDJh8OC >>355
> >348
> >>>333 にあります。
>
> 以下が内容ですが、
> どの部分のことでしょうか?
>
> > 証明(1)の中で「x:y:z = 有理数:有理数:有理数」は現れないのですよね?
> >
> > 証明(1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
> > 証明(1)の中で「x:y:z = 無理数:無理数:無理数」は現れません。
>
> それは、45
> -----
> 45 名前:日高[] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
> >43
> x:y:z = 有理数:有理数:有理数 ...(イ)
> になりますか?
>
> なりません。
> -----
> と矛盾します。
え、分かってなかったのですか?
>>284 の
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
と、
>>45 の
> x:y:z = 有理数:有理数:有理数 になりますか?→なりません。
の部分です。
> >348
> >>>333 にあります。
>
> 以下が内容ですが、
> どの部分のことでしょうか?
>
> > 証明(1)の中で「x:y:z = 有理数:有理数:有理数」は現れないのですよね?
> >
> > 証明(1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
> > 証明(1)の中で「x:y:z = 無理数:無理数:無理数」は現れません。
>
> それは、45
> -----
> 45 名前:日高[] 投稿日:2021/03/04(木) 19:25:06.18 ID:FbLTf6OQ [25/32]
> >43
> x:y:z = 有理数:有理数:有理数 ...(イ)
> になりますか?
>
> なりません。
> -----
> と矛盾します。
え、分かってなかったのですか?
>>284 の
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
と、
>>45 の
> x:y:z = 有理数:有理数:有理数 になりますか?→なりません。
の部分です。
359日高
2021/03/07(日) 09:30:18.96ID:CCs09SvA360日高
2021/03/07(日) 09:31:20.75ID:CCs09SvA 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
361132人目の素数さん
2021/03/07(日) 09:32:49.45ID:HnDJh8OC362日高
2021/03/07(日) 09:33:24.33ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
363日高
2021/03/07(日) 09:37:17.53ID:CCs09SvA >361
いや、あなたが書いたレスなので、
あなたが意味を与えてください。
この前の質問に対しての答えの
言葉だと、思うので、前の質問を教えてください。
いや、あなたが書いたレスなので、
あなたが意味を与えてください。
この前の質問に対しての答えの
言葉だと、思うので、前の質問を教えてください。
364日高
2021/03/07(日) 09:40:58.95ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
365132人目の素数さん
2021/03/07(日) 09:41:36.91ID:HnDJh8OC366132人目の素数さん
2021/03/07(日) 09:43:49.23ID:QiCHDEWY 360 名前:日高[] 投稿日:2021/03/07(日) 09:31:20.75 ID:CCs09SvA [15/18]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
362 名前:日高[] 投稿日:2021/03/07(日) 09:33:24.33 ID:CCs09SvA [16/18]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
364 名前:日高[] 投稿日:2021/03/07(日) 09:40:58.95 ID:CCs09SvA [18/18]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
362 名前:日高[] 投稿日:2021/03/07(日) 09:33:24.33 ID:CCs09SvA [16/18]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
364 名前:日高[] 投稿日:2021/03/07(日) 09:40:58.95 ID:CCs09SvA [18/18]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
367132人目の素数さん
2021/03/07(日) 09:44:25.29ID:QiCHDEWY 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/07(日) 09:44:49.68ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
369恣意的にr=2とします
2021/03/07(日) 09:45:10.52ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/07(日) 09:46:45.80ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
371恣意的にr=2とします
2021/03/07(日) 09:47:15.76ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
372日高
2021/03/07(日) 10:12:43.02ID:CCs09SvA373日高
2021/03/07(日) 10:13:55.12ID:CCs09SvA 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
374日高
2021/03/07(日) 10:15:06.02ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
375132人目の素数さん
2021/03/07(日) 10:15:26.58ID:HnDJh8OC376日高
2021/03/07(日) 10:15:59.27ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
377日高
2021/03/07(日) 10:21:01.54ID:CCs09SvA >375
いや、あなたのレスなので、私に聞かれても困ります。
「x:y:z = 有理数:有理数:有理数」は現れます。
なぜ、こういう表現をしたかが、わかりません。
質問が、なければ、答えないと、思います。
いや、あなたのレスなので、私に聞かれても困ります。
「x:y:z = 有理数:有理数:有理数」は現れます。
なぜ、こういう表現をしたかが、わかりません。
質問が、なければ、答えないと、思います。
378日高
2021/03/07(日) 10:23:05.86ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
379132人目の素数さん
2021/03/07(日) 10:23:48.00ID:HnDJh8OC380132人目の素数さん
2021/03/07(日) 10:30:08.55ID:QiCHDEWY 373 名前:日高[] 投稿日:2021/03/07(日) 10:13:55.12 ID:CCs09SvA [20/24]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
374 名前:日高[] 投稿日:2021/03/07(日) 10:15:06.02 ID:CCs09SvA [21/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
376 名前:日高[] 投稿日:2021/03/07(日) 10:15:59.27 ID:CCs09SvA [22/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
374 名前:日高[] 投稿日:2021/03/07(日) 10:15:06.02 ID:CCs09SvA [21/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
376 名前:日高[] 投稿日:2021/03/07(日) 10:15:59.27 ID:CCs09SvA [22/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
381132人目の素数さん
2021/03/07(日) 10:30:26.82ID:QiCHDEWY 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
382日高
2021/03/07(日) 10:32:02.70ID:CCs09SvA383132人目の素数さん
2021/03/07(日) 10:33:26.01ID:J6uLhHo4 完全に認知症だな
相手する必要なし
相手する必要なし
384日高
2021/03/07(日) 10:49:45.15ID:CCs09SvA 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
385日高
2021/03/07(日) 10:50:44.61ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
386日高
2021/03/07(日) 10:51:26.82ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
387日高
2021/03/07(日) 10:52:28.07ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
388日高
2021/03/07(日) 10:56:27.04ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
389日高
2021/03/07(日) 10:57:49.45ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
390日高
2021/03/07(日) 10:59:05.66ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
391日高
2021/03/07(日) 11:01:21.78ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=9を代入する。
ピタゴラス数x=77、y=36、z=85を得る。
x^2+y^2=(x+2)^2に、y=9を代入する。
ピタゴラス数x=77、y=36、z=85を得る。
392日高
2021/03/07(日) 11:03:44.16ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
393日高
2021/03/07(日) 11:07:04.79ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=11を代入する。
ピタゴラス数x=117、y=44、z=125を得る。
x^2+y^2=(x+2)^2に、y=11を代入する。
ピタゴラス数x=117、y=44、z=125を得る。
394132人目の素数さん
2021/03/07(日) 11:30:06.18ID:QiCHDEWY 384 名前:日高[] 投稿日:2021/03/07(日) 10:49:45.15 ID:CCs09SvA [26/35]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
385 名前:日高[] 投稿日:2021/03/07(日) 10:50:44.61 ID:CCs09SvA [27/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
386 名前:日高[] 投稿日:2021/03/07(日) 10:51:26.82 ID:CCs09SvA [28/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
387 名前:日高[] 投稿日:2021/03/07(日) 10:52:28.07 ID:CCs09SvA [29/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
388 名前:日高[] 投稿日:2021/03/07(日) 10:56:27.04 ID:CCs09SvA [30/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
385 名前:日高[] 投稿日:2021/03/07(日) 10:50:44.61 ID:CCs09SvA [27/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
386 名前:日高[] 投稿日:2021/03/07(日) 10:51:26.82 ID:CCs09SvA [28/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
387 名前:日高[] 投稿日:2021/03/07(日) 10:52:28.07 ID:CCs09SvA [29/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
388 名前:日高[] 投稿日:2021/03/07(日) 10:56:27.04 ID:CCs09SvA [30/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
395132人目の素数さん
2021/03/07(日) 11:30:51.93ID:QiCHDEWY 389 名前:日高[] 投稿日:2021/03/07(日) 10:57:49.45 ID:CCs09SvA [31/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
390 名前:日高[] 投稿日:2021/03/07(日) 10:59:05.66 ID:CCs09SvA [32/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
391 名前:日高[] 投稿日:2021/03/07(日) 11:01:21.78 ID:CCs09SvA [33/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=9を代入する。
ピタゴラス数x=77、y=36、z=85を得る。
392 名前:日高[] 投稿日:2021/03/07(日) 11:03:44.16 ID:CCs09SvA [34/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
393 名前:日高[] 投稿日:2021/03/07(日) 11:07:04.79 ID:CCs09SvA [35/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=11を代入する。
ピタゴラス数x=117、y=44、z=125を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
390 名前:日高[] 投稿日:2021/03/07(日) 10:59:05.66 ID:CCs09SvA [32/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
391 名前:日高[] 投稿日:2021/03/07(日) 11:01:21.78 ID:CCs09SvA [33/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=9を代入する。
ピタゴラス数x=77、y=36、z=85を得る。
392 名前:日高[] 投稿日:2021/03/07(日) 11:03:44.16 ID:CCs09SvA [34/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
393 名前:日高[] 投稿日:2021/03/07(日) 11:07:04.79 ID:CCs09SvA [35/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=11を代入する。
ピタゴラス数x=117、y=44、z=125を得る。
396132人目の素数さん
2021/03/07(日) 11:31:17.53ID:QiCHDEWY 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/07(日) 11:31:48.53ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
398恣意的にr=2とします
2021/03/07(日) 11:32:12.60ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/07(日) 11:33:14.28ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
400恣意的にr=2とします
2021/03/07(日) 11:33:36.32ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
401日高
2021/03/07(日) 11:37:23.86ID:CCs09SvA 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
402日高
2021/03/07(日) 11:38:05.98ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
403日高
2021/03/07(日) 11:38:58.33ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
404日高
2021/03/07(日) 11:39:41.37ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
405日高
2021/03/07(日) 11:40:52.42ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
406日高
2021/03/07(日) 11:42:56.95ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
407日高
2021/03/07(日) 11:43:34.92ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
408132人目の素数さん
2021/03/07(日) 11:58:14.14ID:HnDJh8OC409132人目の素数さん
2021/03/07(日) 12:08:25.27ID:HnDJh8OC410日高
2021/03/07(日) 12:14:53.54ID:CCs09SvA >408
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
は間違いだったという事でよろしいでしょうか?
はい。
「x:y:z = 有理数:有理数:有理数」は現れます。
なぜ、この、表現をしたのかが、わかりませんが、
> 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
は間違いだったという事でよろしいでしょうか?
はい。
「x:y:z = 有理数:有理数:有理数」は現れます。
なぜ、この、表現をしたのかが、わかりませんが、
411132人目の素数さん
2021/03/07(日) 12:21:36.41ID:+G1uGT5F >>401
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目 (3)はyを有理数とすると、xは無理数となる。
しかし、あなたの書いた通り
> (3)に有理数比の解がない証拠は、ありません。
(1)(2)(4)には(3)の解と同じ比の解があるので、有理数比の解がない証拠は、ありません。
よって、06行目はインチキのウソです。
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目 (3)はyを有理数とすると、xは無理数となる。
しかし、あなたの書いた通り
> (3)に有理数比の解がない証拠は、ありません。
(1)(2)(4)には(3)の解と同じ比の解があるので、有理数比の解がない証拠は、ありません。
よって、06行目はインチキのウソです。
412132人目の素数さん
2021/03/07(日) 12:28:47.18ID:+G1uGT5F n=2でいえば
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
(3)の解の中で、(5)の解であるものはありません。
(5)の解の中で、(3)の解であるものはありません。
(3)の解と(5)の解には、同じ解の比が同じものがあります。
(5)にx,y,zが有理数の解はありません。
しかし、(5)に有理数比の解はあります。
つまり、(5)に有理数の解がないことは、(5)に有理数比の解はない証拠になりません。
(3)の解と(5)の解には、同じ解の比が同じものがあるので、
(5)に有理数の解がないことは、(3)に有理数比の解はない証拠になりません。
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
(3)の解の中で、(5)の解であるものはありません。
(5)の解の中で、(3)の解であるものはありません。
(3)の解と(5)の解には、同じ解の比が同じものがあります。
(5)にx,y,zが有理数の解はありません。
しかし、(5)に有理数比の解はあります。
つまり、(5)に有理数の解がないことは、(5)に有理数比の解はない証拠になりません。
(3)の解と(5)の解には、同じ解の比が同じものがあるので、
(5)に有理数の解がないことは、(3)に有理数比の解はない証拠になりません。
413日高
2021/03/07(日) 12:39:26.46ID:CCs09SvA >411
よって、06行目はインチキのウソです。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
(3)はyを有理数とすると、xは無理数となります。
よって、x^n+y^n=z^nは自然数解を持ちません。
よって、06行目はインチキのウソです。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
(3)はyを有理数とすると、xは無理数となります。
よって、x^n+y^n=z^nは自然数解を持ちません。
414132人目の素数さん
2021/03/07(日) 12:44:04.03ID:QiCHDEWY 401 名前:日高[] 投稿日:2021/03/07(日) 11:37:23.86 ID:CCs09SvA [36/44]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
402 名前:日高[] 投稿日:2021/03/07(日) 11:38:05.98 ID:CCs09SvA [37/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
403 名前:日高[] 投稿日:2021/03/07(日) 11:38:58.33 ID:CCs09SvA [38/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
404 名前:日高[] 投稿日:2021/03/07(日) 11:39:41.37 ID:CCs09SvA [39/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
402 名前:日高[] 投稿日:2021/03/07(日) 11:38:05.98 ID:CCs09SvA [37/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
403 名前:日高[] 投稿日:2021/03/07(日) 11:38:58.33 ID:CCs09SvA [38/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
404 名前:日高[] 投稿日:2021/03/07(日) 11:39:41.37 ID:CCs09SvA [39/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
415132人目の素数さん
2021/03/07(日) 12:44:19.79ID:QiCHDEWY 405 名前:日高[] 投稿日:2021/03/07(日) 11:40:52.42 ID:CCs09SvA [40/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
406 名前:日高[] 投稿日:2021/03/07(日) 11:42:56.95 ID:CCs09SvA [41/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
407 名前:日高[] 投稿日:2021/03/07(日) 11:43:34.92 ID:CCs09SvA [42/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
406 名前:日高[] 投稿日:2021/03/07(日) 11:42:56.95 ID:CCs09SvA [41/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
407 名前:日高[] 投稿日:2021/03/07(日) 11:43:34.92 ID:CCs09SvA [42/44]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
416132人目の素数さん
2021/03/07(日) 12:44:46.93ID:QiCHDEWY 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/07(日) 12:45:22.15ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
418恣意的にr=2とします
2021/03/07(日) 12:46:08.32ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/07(日) 12:46:59.95ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
420恣意的にr=2とします
2021/03/07(日) 12:47:26.49ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
421日高
2021/03/07(日) 12:47:36.69ID:CCs09SvA >412
(5)に有理数の解がないことは、(3)に有理数比の解はない証拠になりません。
そうですね。
(5)に有理数の解がないことは、(3)に有理数比の解はない証拠になりません。
そうですね。
422恣意的にr=2とします
2021/03/07(日) 12:47:49.07ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
423132人目の素数さん
2021/03/07(日) 12:50:07.39ID:HnDJh8OC 196 名前:132人目の素数さん[sage] 投稿日:2021/03/06(土) 08:43:12.71 ID:HfRZEFmr [2/7]
>>176
> >172
> で、その有理数の組み合わせがフェルマーの解にならないことは
> どうやって分かりますか? と聞いています。
>
> 有理数の組み合わせは、ないということです。
>
> フェルマーの解とは?ことばの意味が、はっきりわかりません。
フェルマーの解とは、 x^n+y^n=z^n の解という意味です。
式で説明します。
>>15 をお借りします。
> (3)のx,yが無理数の場合は、x=sw、y=twとおく。
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
> 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
> s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
> (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
ここまでが(>>105)の内容だと思います。
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
>>176
> >172
> で、その有理数の組み合わせがフェルマーの解にならないことは
> どうやって分かりますか? と聞いています。
>
> 有理数の組み合わせは、ないということです。
>
> フェルマーの解とは?ことばの意味が、はっきりわかりません。
フェルマーの解とは、 x^n+y^n=z^n の解という意味です。
式で説明します。
>>15 をお借りします。
> (3)のx,yが無理数の場合は、x=sw、y=twとおく。
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
> 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
> s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
> (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
ここまでが(>>105)の内容だと思います。
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
424132人目の素数さん
2021/03/07(日) 12:50:32.60ID:HnDJh8OC 248 名前:日高[] 投稿日:2021/03/06(土) 10:25:02.38 ID:m6XkTfq6 [31/61]
>245
では、どの時点で s^n+t^n=u^n…(C) が成立しない事が分かりますか?
1によって、わかります。
>245
では、どの時点で s^n+t^n=u^n…(C) が成立しない事が分かりますか?
1によって、わかります。
425132人目の素数さん
2021/03/07(日) 12:51:08.03ID:HnDJh8OC >>410
> >408
> > 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
> は間違いだったという事でよろしいでしょうか?
>
> はい。
>
> 「x:y:z = 有理数:有理数:有理数」は現れます。
> なぜ、この、表現をしたのかが、わかりませんが、
以上より、証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れない、という事でした。
なのであなたの【証明】は、
s,t,u が有理数である、 s^n+t^n=u^n…(C) が成立しない事の根拠には使えません。
(有理数である s,t,u を扱えないから)
s^n+t^n=u^n…(C) が成立しない事の、別の根拠を提示して下さい。
> >408
> > 証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れます。
> は間違いだったという事でよろしいでしょうか?
>
> はい。
>
> 「x:y:z = 有理数:有理数:有理数」は現れます。
> なぜ、この、表現をしたのかが、わかりませんが、
以上より、証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れない、という事でした。
なのであなたの【証明】は、
s,t,u が有理数である、 s^n+t^n=u^n…(C) が成立しない事の根拠には使えません。
(有理数である s,t,u を扱えないから)
s^n+t^n=u^n…(C) が成立しない事の、別の根拠を提示して下さい。
426日高
2021/03/07(日) 13:01:22.19ID:CCs09SvA >423
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の、r,xを有理数とすると、yが有理数とならないからです。
それで、 s^n+t^n=u^n…(C) が実際には成立していない(つまり、s,t,u がフェルマーの解ではない)ことは
どうやって分かりますか?
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の、r,xを有理数とすると、yが有理数とならないからです。
427132人目の素数さん
2021/03/07(日) 13:03:22.34ID:+G1uGT5F >>413
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
(5)は有理数で整数比の解はありません。
(5)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるので、x^n+y^n=z^nは自然数解をもちます。
よって、
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
同様に
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
> (3)はyを有理数とすると、xは無理数となります。
もし、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあれば、x^n+y^n=z^nは自然数解をもちます。
よって、
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
(5)は有理数で整数比の解はありません。
(5)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるので、x^n+y^n=z^nは自然数解をもちます。
よって、
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
同様に
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
> (3)はyを有理数とすると、xは無理数となります。
もし、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあれば、x^n+y^n=z^nは自然数解をもちます。
よって、
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
428日高
2021/03/07(日) 13:06:35.87ID:CCs09SvA >425
以上より、証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れない、という事でした。
なのであなたの【証明】は、
s,t,u が有理数である、 s^n+t^n=u^n…(C) が成立しない事の根拠には使えません。
(有理数である s,t,u を扱えないから)
(4)は、x:y:z = 有理数:有理数:有理数」とは、なりませんが、
x:y:z = 有理数:無理数:有理数」となります。
以上より、証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れない、という事でした。
なのであなたの【証明】は、
s,t,u が有理数である、 s^n+t^n=u^n…(C) が成立しない事の根拠には使えません。
(有理数である s,t,u を扱えないから)
(4)は、x:y:z = 有理数:有理数:有理数」とは、なりませんが、
x:y:z = 有理数:無理数:有理数」となります。
429日高
2021/03/07(日) 13:14:38.77ID:CCs09SvA >427
(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあれば、x^n+y^n=z^nは自然数解をもちます。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものが
あるとも、ないとも、いえません。
(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあれば、x^n+y^n=z^nは自然数解をもちます。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものが
あるとも、ないとも、いえません。
430132人目の素数さん
2021/03/07(日) 13:23:39.04ID:+G1uGT5F >>429
> n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものが
> あるとも、ないとも、いえません。
つまり、x^n+y^n=z^nは自然数解をもつとも、持たないとも、言えません。
よって、
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
> n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものが
> あるとも、ないとも、いえません。
つまり、x^n+y^n=z^nは自然数解をもつとも、持たないとも、言えません。
よって、
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
431132人目の素数さん
2021/03/07(日) 13:29:28.23ID:HnDJh8OC >>428
> >425
> 以上より、証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れない、という事でした。
> なのであなたの【証明】は、
> s,t,u が有理数である、 s^n+t^n=u^n…(C) が成立しない事の根拠には使えません。
> (有理数である s,t,u を扱えないから)
>
> (4)は、x:y:z = 有理数:有理数:有理数」とは、なりませんが、
> x:y:z = 有理数:無理数:有理数」となります。
式 s^n+t^n=u^n…(C)
を立てた時点で、s:t:u = 有理数:有理数:有理数 になります。
なので、x:y:z = 有理数:無理数:有理数 には当てはまりません。
> >425
> 以上より、証明(>>1)の中で「x:y:z = 有理数:有理数:有理数」は現れない、という事でした。
> なのであなたの【証明】は、
> s,t,u が有理数である、 s^n+t^n=u^n…(C) が成立しない事の根拠には使えません。
> (有理数である s,t,u を扱えないから)
>
> (4)は、x:y:z = 有理数:有理数:有理数」とは、なりませんが、
> x:y:z = 有理数:無理数:有理数」となります。
式 s^n+t^n=u^n…(C)
を立てた時点で、s:t:u = 有理数:有理数:有理数 になります。
なので、x:y:z = 有理数:無理数:有理数 には当てはまりません。
432日高
2021/03/07(日) 13:44:28.70ID:CCs09SvA >430
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
(3)の解でyが無理数のもののうち、x、y、zが有理数比のものについては、
上のことが、いえます。
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
(3)の解でyが無理数のもののうち、x、y、zが有理数比のものについては、
上のことが、いえます。
433日高
2021/03/07(日) 13:49:16.29ID:CCs09SvA >431
式 s^n+t^n=u^n…(C)
を立てた時点で、s:t:u = 有理数:有理数:有理数 になります。
なので、x:y:z = 有理数:無理数:有理数 には当てはまりません。
式 s^n+t^n=u^n…(C)が成立するかどうかは、不明です。
(4)に当てはめると、成立しません。
式 s^n+t^n=u^n…(C)
を立てた時点で、s:t:u = 有理数:有理数:有理数 になります。
なので、x:y:z = 有理数:無理数:有理数 には当てはまりません。
式 s^n+t^n=u^n…(C)が成立するかどうかは、不明です。
(4)に当てはめると、成立しません。
434132人目の素数さん
2021/03/07(日) 14:11:35.93ID:+G1uGT5F >>432
いいえ。
(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあれば、
(3)のすべての解の中に、x、y、zが有理数比のものがあるといえます。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
よって
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
いいえ。
(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあれば、
(3)のすべての解の中に、x、y、zが有理数比のものがあるといえます。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
よって
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
435日高
2021/03/07(日) 14:40:33.75ID:CCs09SvA >434
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
よって
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
x^n+y^n=z^nの、x,y,zが有理数とならないので、x^n+y^n=z^nは自然数解を持ちません。
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
よって
> x^n+y^n=z^nは自然数解を持ちません。
とはいえません。
x^n+y^n=z^nの、x,y,zが有理数とならないので、x^n+y^n=z^nは自然数解を持ちません。
436日高
2021/03/07(日) 14:41:34.19ID:CCs09SvA 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2021/03/07(日) 14:41:51.80ID:QiCHDEWY
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
438132人目の素数さん
2021/03/07(日) 14:42:18.50ID:QiCHDEWY 436 名前:日高[] 投稿日:2021/03/07(日) 14:41:34.19 ID:CCs09SvA [52/52]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
439日高
2021/03/07(日) 14:42:30.94ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
440132人目の素数さん
2021/03/07(日) 14:43:12.58ID:QiCHDEWY 439 名前:日高[] 投稿日:2021/03/07(日) 14:42:30.94 ID:CCs09SvA [53/53]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
441日高
2021/03/07(日) 14:43:14.57ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
442132人目の素数さん
2021/03/07(日) 14:43:59.44ID:QiCHDEWY 441 名前:日高[] 投稿日:2021/03/07(日) 14:43:14.57 ID:CCs09SvA [54/54]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
443日高
2021/03/07(日) 14:44:09.29ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
444132人目の素数さん
2021/03/07(日) 14:44:43.93ID:QiCHDEWY 443 名前:日高[] 投稿日:2021/03/07(日) 14:44:09.29 ID:CCs09SvA [55/55]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
445132人目の素数さん
2021/03/07(日) 14:48:06.94ID:+G1uGT5F446日高
2021/03/07(日) 15:31:39.46ID:CCs09SvA >445
> x^n+y^n=z^nの、x,y,zが有理数とならない
これを証明してください。
1を、見て下さい。
> x^n+y^n=z^nの、x,y,zが有理数とならない
これを証明してください。
1を、見て下さい。
447132人目の素数さん
2021/03/07(日) 15:51:12.76ID:QiCHDEWY 735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/07(日) 15:51:32.07ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
449恣意的にr=2とします
2021/03/07(日) 15:51:52.55ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/07(日) 15:52:18.64ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
451恣意的にr=2とします
2021/03/07(日) 15:52:46.49ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/07(日) 15:53:34.18ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
453恣意的にr=2とします
2021/03/07(日) 15:53:58.77ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
454132人目の素数さん
2021/03/07(日) 16:06:54.13ID:taGg7t9N455132人目の素数さん
2021/03/07(日) 16:10:40.73ID:HnDJh8OC >>433
> >431
> 式 s^n+t^n=u^n…(C)
> を立てた時点で、s:t:u = 有理数:有理数:有理数 になります。
> なので、x:y:z = 有理数:無理数:有理数 には当てはまりません。
>
> 式 s^n+t^n=u^n…(C)が成立するかどうかは、不明です。
> (4)に当てはめると、成立しません。
(4)に当てはめると、どうして成立しないのでしょうか?
> >431
> 式 s^n+t^n=u^n…(C)
> を立てた時点で、s:t:u = 有理数:有理数:有理数 になります。
> なので、x:y:z = 有理数:無理数:有理数 には当てはまりません。
>
> 式 s^n+t^n=u^n…(C)が成立するかどうかは、不明です。
> (4)に当てはめると、成立しません。
(4)に当てはめると、どうして成立しないのでしょうか?
456ほんとうに愚かですね
2021/03/07(日) 16:23:12.21ID:QiCHDEWY 455 名前:132人目の素数さん[sage] 投稿日:2021/03/07(日) 16:10:40.73 ID:HnDJh8OC [18/18]
>>433
> >431
> 式 s^n+t^n=u^n…(C)
> を立てた時点で、s:t:u = 有理数:有理数:有理数 になります。
> なので、x:y:z = 有理数:無理数:有理数 には当てはまりません。
>
> 式 s^n+t^n=u^n…(C)が成立するかどうかは、不明です。
> (4)に当てはめると、成立しません。
(4)に当てはめると、どうして成立しないのでしょうか?
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
>>433
> >431
> 式 s^n+t^n=u^n…(C)
> を立てた時点で、s:t:u = 有理数:有理数:有理数 になります。
> なので、x:y:z = 有理数:無理数:有理数 には当てはまりません。
>
> 式 s^n+t^n=u^n…(C)が成立するかどうかは、不明です。
> (4)に当てはめると、成立しません。
(4)に当てはめると、どうして成立しないのでしょうか?
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/07(日) 16:28:13.07ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
458恣意的にr=2とします
2021/03/07(日) 16:28:32.30ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
459日高
2021/03/07(日) 16:57:19.75ID:CCs09SvA460日高
2021/03/07(日) 17:01:57.16ID:CCs09SvA >455
(4)に当てはめると、どうして成立しないのでしょうか?
(4)は、xが有理数、yが無理数、zが有理数となるからです。
(4)に当てはめると、どうして成立しないのでしょうか?
(4)は、xが有理数、yが無理数、zが有理数となるからです。
461日高
2021/03/07(日) 17:03:12.61ID:CCs09SvA 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
462日高
2021/03/07(日) 17:04:01.63ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
463日高
2021/03/07(日) 17:04:44.33ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
464日高
2021/03/07(日) 17:06:03.50ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
465132人目の素数さん
2021/03/07(日) 17:06:42.76ID:HnDJh8OC >>460
> >455
> (4)に当てはめると、どうして成立しないのでしょうか?
>
> (4)は、xが有理数、yが無理数、zが有理数となるからです。
しつこいですが、どうして
(4)は、xが有理数、yが無理数、zが有理数となるのでしょうか。
> >455
> (4)に当てはめると、どうして成立しないのでしょうか?
>
> (4)は、xが有理数、yが無理数、zが有理数となるからです。
しつこいですが、どうして
(4)は、xが有理数、yが無理数、zが有理数となるのでしょうか。
466日高
2021/03/07(日) 17:07:30.74ID:CCs09SvA 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
467日高
2021/03/07(日) 17:12:29.79ID:CCs09SvA >465
しつこいですが、どうして
(4)は、xが有理数、yが無理数、zが有理数となるのでしょうか。
(3)の解のx,yは、整数比となりません。
(4)の解のx,yは、(3)の解のx,yの定数倍です。
(4)のrは有理数となり得ます。
しつこいですが、どうして
(4)は、xが有理数、yが無理数、zが有理数となるのでしょうか。
(3)の解のx,yは、整数比となりません。
(4)の解のx,yは、(3)の解のx,yの定数倍です。
(4)のrは有理数となり得ます。
468132人目の素数さん
2021/03/07(日) 17:16:54.77ID:QiCHDEWY 461 名前:日高[] 投稿日:2021/03/07(日) 17:03:12.61 ID:CCs09SvA [59/64]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
462 名前:日高[] 投稿日:2021/03/07(日) 17:04:01.63 ID:CCs09SvA [60/64]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
463 名前:日高[] 投稿日:2021/03/07(日) 17:04:44.33 ID:CCs09SvA [61/64]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
464 名前:日高[] 投稿日:2021/03/07(日) 17:06:03.50 ID:CCs09SvA [62/64]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
462 名前:日高[] 投稿日:2021/03/07(日) 17:04:01.63 ID:CCs09SvA [60/64]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
463 名前:日高[] 投稿日:2021/03/07(日) 17:04:44.33 ID:CCs09SvA [61/64]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
464 名前:日高[] 投稿日:2021/03/07(日) 17:06:03.50 ID:CCs09SvA [62/64]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
469132人目の素数さん
2021/03/07(日) 17:17:35.40ID:QiCHDEWY 466 名前:日高[] 投稿日:2021/03/07(日) 17:07:30.74 ID:CCs09SvA [63/64]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/07(日) 17:39:31.33ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
471恣意的にr=2とします
2021/03/07(日) 17:39:52.53ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
472132人目の素数さん
2021/03/07(日) 17:40:52.85ID:+G1uGT5F >>446
> 1を、見て下さい。
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
> 1を、見て下さい。
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
473日高
2021/03/07(日) 18:03:57.02ID:CCs09SvA >472
よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
(3)の解のx,yは、整数比となりません。
(4)の解のx,yは、(3)の解のx,yの定数倍です。
(4)のrは有理数となり得ます。
よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
(3)の解のx,yは、整数比となりません。
(4)の解のx,yは、(3)の解のx,yの定数倍です。
(4)のrは有理数となり得ます。
474132人目の素数さん
2021/03/07(日) 18:25:25.30ID:v8vBkO19 >>473
> >472
> よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
>
> (3)の解のx,yは、整数比となりません。
ダウト。
任意の比の解が存在することを容易に示すことができる。
この「整数比となりません」が成立するためには条件がつく。例えば「yが有理数である」とか。
これを無視して当然のことのように嘘偽りを断言するのが日高。
> (4)の解のx,yは、(3)の解のx,yの定数倍です。
> (4)のrは有理数となり得ます。
> >472
> よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
>
> (3)の解のx,yは、整数比となりません。
ダウト。
任意の比の解が存在することを容易に示すことができる。
この「整数比となりません」が成立するためには条件がつく。例えば「yが有理数である」とか。
これを無視して当然のことのように嘘偽りを断言するのが日高。
> (4)の解のx,yは、(3)の解のx,yの定数倍です。
> (4)のrは有理数となり得ます。
475132人目の素数さん
2021/03/07(日) 18:26:06.21ID:+G1uGT5F >>473
x=1,y=2,z=9^(1/3)のとき
1^3+2^3=((9^(1/3)))^3
この解と同じ比の(3)の解が必ず存在します。
> (3)の解のx,yは、整数比となりません。
はウソです。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
もし(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあれば、(3)の解のx、yは整数比となります。
> (3)の解のx,yは、整数比となりません。
はウソです。
x=1,y=2,z=9^(1/3)のとき
1^3+2^3=((9^(1/3)))^3
この解と同じ比の(3)の解が必ず存在します。
> (3)の解のx,yは、整数比となりません。
はウソです。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
もし(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあれば、(3)の解のx、yは整数比となります。
> (3)の解のx,yは、整数比となりません。
はウソです。
476日高
2021/03/07(日) 18:35:35.41ID:CCs09SvA >474
> (3)の解のx,yは、整数比となりません。
ダウト。
任意の比の解が存在することを容易に示すことができる。
どういう意味でしょうか?
> (3)の解のx,yは、整数比となりません。
ダウト。
任意の比の解が存在することを容易に示すことができる。
どういう意味でしょうか?
477日高
2021/03/07(日) 18:44:02.64ID:CCs09SvA >475
x=1,y=2,z=9^(1/3)のとき
1^3+2^3=((9^(1/3)))^3
この解と同じ比の(3)の解が必ず存在します。
> (3)の解のx,yは、整数比となりません。
はウソです。
(9^(1/3))=1+√3となるでしょうか?
x=1,y=2,z=9^(1/3)のとき
1^3+2^3=((9^(1/3)))^3
この解と同じ比の(3)の解が必ず存在します。
> (3)の解のx,yは、整数比となりません。
はウソです。
(9^(1/3))=1+√3となるでしょうか?
478132人目の素数さん
2021/03/07(日) 18:49:44.06ID:+G1uGT5F >>477
同じ比、ってわかりますか?
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
x=3,y=4,z=5は(5)の解ではありません。
x=3,y=4,z=5と同じ比の(5)の解が存在します。
x=1,y=2,z=9^(1/3)のとき
1^3+2^3=(9^(1/3))^3
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
x=1,y=2,z=9^(1/3)は(3)の解ではありません。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
なので、
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
同じ比、ってわかりますか?
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
x=3,y=4,z=5は(5)の解ではありません。
x=3,y=4,z=5と同じ比の(5)の解が存在します。
x=1,y=2,z=9^(1/3)のとき
1^3+2^3=(9^(1/3))^3
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
x=1,y=2,z=9^(1/3)は(3)の解ではありません。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
なので、
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
479どういう意味でしょうか?
2021/03/07(日) 19:52:52.70ID:QiCHDEWY 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
480どういう意味でしょうか?
2021/03/07(日) 19:53:23.18ID:QiCHDEWY 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/07(日) 20:47:20.14ID:QiCHDEWY
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/07(日) 20:47:54.12ID:QiCHDEWY
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
483132人目の素数さん
2021/03/07(日) 22:45:04.05ID:ASgqmALb (3)はx^n+y^n=(x+n^{1/(n-1)})^nだからx,y二変数の方程式なのだが
日高君の頭の中ではこの式とz=x+n^{1/(n-1)}の三変数連立方程式になっている
だからx:y:zが自然数比でないと意味がない
その辺がすれ違いの原因かも
日高君の頭の中ではこの式とz=x+n^{1/(n-1)}の三変数連立方程式になっている
だからx:y:zが自然数比でないと意味がない
その辺がすれ違いの原因かも
484132人目の素数さん
2021/03/08(月) 06:57:56.89ID:FPy8Zm7b >>467
> >465
> しつこいですが、どうして
> (4)は、xが有理数、yが無理数、zが有理数となるのでしょうか。
>
> (3)の解のx,yは、整数比となりません。
> (4)の解のx,yは、(3)の解のx,yの定数倍です。
> (4)のrは有理数となり得ます。
(3)の解のx,y,zを、全て無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
よって、式 s^n+t^n=u^n…(C) の不成立は言えません。
> >465
> しつこいですが、どうして
> (4)は、xが有理数、yが無理数、zが有理数となるのでしょうか。
>
> (3)の解のx,yは、整数比となりません。
> (4)の解のx,yは、(3)の解のx,yの定数倍です。
> (4)のrは有理数となり得ます。
(3)の解のx,y,zを、全て無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
よって、式 s^n+t^n=u^n…(C) の不成立は言えません。
485日高
2021/03/08(月) 08:28:22.71ID:GHSiXk/i >478
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解は存在しません。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解は存在しません。
486日高
2021/03/08(月) 08:32:58.53ID:GHSiXk/i >483
だからx:y:zが自然数比でないと意味がない
よく、意味がわかりません。
だからx:y:zが自然数比でないと意味がない
よく、意味がわかりません。
487日高
2021/03/08(月) 08:37:25.83ID:GHSiXk/i >484
(3)の解のx,y,zを、全て無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
(3)の解のx,y,zが、無理数で、整数比ならば、
(4)のx,y,zは全て有理数となり得ます。
(3)の解のx,y,zを、全て無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
(3)の解のx,y,zが、無理数で、整数比ならば、
(4)のx,y,zは全て有理数となり得ます。
488132人目の素数さん
2021/03/08(月) 08:40:10.43ID:FPy8Zm7b >>487
> >484
> (3)の解のx,y,zを、全て無理数とおきます。
> (4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
> (4)のx,y,zは全て有理数となり得ます。
>
> (3)の解のx,y,zが、無理数で、整数比ならば、
> (4)のx,y,zは全て有理数となり得ます。
ああ、そうですね。整数比が抜けてました。
(3)の解のx,y,zを、全て整数比の無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
よって、式 s^n+t^n=u^n…(C) の不成立は言えません。
> >484
> (3)の解のx,y,zを、全て無理数とおきます。
> (4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
> (4)のx,y,zは全て有理数となり得ます。
>
> (3)の解のx,y,zが、無理数で、整数比ならば、
> (4)のx,y,zは全て有理数となり得ます。
ああ、そうですね。整数比が抜けてました。
(3)の解のx,y,zを、全て整数比の無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
よって、式 s^n+t^n=u^n…(C) の不成立は言えません。
489日高
2021/03/08(月) 08:43:12.12ID:GHSiXk/i 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
490日高
2021/03/08(月) 08:48:15.06ID:GHSiXk/i 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
491日高
2021/03/08(月) 08:49:48.31ID:GHSiXk/i 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
492日高
2021/03/08(月) 08:58:16.46ID:GHSiXk/i >488
(3)の解のx,y,zを、全て整数比の無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
この場合、式 s^n+t^n=u^n…(C) は成立します。
ただ、(3)のx,y,zを、全て整数比の無理数とおいたとき、
式が、成立するかは、不明です。
(3)の解のx,y,zを、全て整数比の無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
この場合、式 s^n+t^n=u^n…(C) は成立します。
ただ、(3)のx,y,zを、全て整数比の無理数とおいたとき、
式が、成立するかは、不明です。
493132人目の素数さん
2021/03/08(月) 09:09:01.20ID:IF5SEJXL 485 名前:日高[] 投稿日:2021/03/08(月) 08:28:22.71 ID:GHSiXk/i [1/7]
>478
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解は存在しません。
486 名前:日高[] 投稿日:2021/03/08(月) 08:32:58.53 ID:GHSiXk/i [2/7]
>483
だからx:y:zが自然数比でないと意味がない
よく、意味がわかりません。
487 名前:日高[] 投稿日:2021/03/08(月) 08:37:25.83 ID:GHSiXk/i [3/7]
>484
(3)の解のx,y,zを、全て無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
(3)の解のx,y,zが、無理数で、整数比ならば、
(4)のx,y,zは全て有理数となり得ます。
>478
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解は存在しません。
486 名前:日高[] 投稿日:2021/03/08(月) 08:32:58.53 ID:GHSiXk/i [2/7]
>483
だからx:y:zが自然数比でないと意味がない
よく、意味がわかりません。
487 名前:日高[] 投稿日:2021/03/08(月) 08:37:25.83 ID:GHSiXk/i [3/7]
>484
(3)の解のx,y,zを、全て無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
(3)の解のx,y,zが、無理数で、整数比ならば、
(4)のx,y,zは全て有理数となり得ます。
494132人目の素数さん
2021/03/08(月) 09:09:36.98ID:IF5SEJXL 489 名前:日高[] 投稿日:2021/03/08(月) 08:43:12.12 ID:GHSiXk/i [4/7]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
490 名前:日高[] 投稿日:2021/03/08(月) 08:48:15.06 ID:GHSiXk/i [5/7]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
491 名前:日高[] 投稿日:2021/03/08(月) 08:49:48.31 ID:GHSiXk/i [6/7]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
492 名前:日高[] 投稿日:2021/03/08(月) 08:58:16.46 ID:GHSiXk/i [7/7]
>488
(3)の解のx,y,zを、全て整数比の無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
この場合、式 s^n+t^n=u^n…(C) は成立します。
ただ、(3)のx,y,zを、全て整数比の無理数とおいたとき、
式が、成立するかは、不明です。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
490 名前:日高[] 投稿日:2021/03/08(月) 08:48:15.06 ID:GHSiXk/i [5/7]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
491 名前:日高[] 投稿日:2021/03/08(月) 08:49:48.31 ID:GHSiXk/i [6/7]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
492 名前:日高[] 投稿日:2021/03/08(月) 08:58:16.46 ID:GHSiXk/i [7/7]
>488
(3)の解のx,y,zを、全て整数比の無理数とおきます。
(4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
(4)のx,y,zは全て有理数となり得ます。
この場合、式 s^n+t^n=u^n…(C) は成立します。
ただ、(3)のx,y,zを、全て整数比の無理数とおいたとき、
式が、成立するかは、不明です。
2021/03/08(月) 09:10:34.41ID:IF5SEJXL
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
496恣意的にr=2とします
2021/03/08(月) 09:11:19.72ID:IF5SEJXL 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/08(月) 09:12:08.30ID:IF5SEJXL
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/08(月) 09:13:08.08ID:IF5SEJXL
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
499132人目の素数さん
2021/03/08(月) 10:18:05.44ID:FPy8Zm7b 式 s^n+t^n=u^n…(C) が成り立てば、フェルマーに反例があることになり、
式(C) が成り立たなければ、フェルマーに解はないことになります。
ちなみに、
式(C) が成立するか不明なら、フェルマーが成り立つとも成り立たないとも言えません。何も言えません。
式(C) が成り立たなければ、フェルマーに解はないことになります。
ちなみに、
式(C) が成立するか不明なら、フェルマーが成り立つとも成り立たないとも言えません。何も言えません。
500132人目の素数さん
2021/03/08(月) 10:18:57.37ID:FPy8Zm7b >>492
> >488
> (3)の解のx,y,zを、全て整数比の無理数とおきます。
> (4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
> (4)のx,y,zは全て有理数となり得ます。
>
> この場合、式 s^n+t^n=u^n…(C) は成立します。
>
> ただ、(3)のx,y,zを、全て整数比の無理数とおいたとき、
> 式が、成立するかは、不明です。
式(C) が成立するかは不明。
だから、
式(C) が成り立たない、とは言えない。
です。
(あなたが証明を完成させるには、
『式(C) が成り立たない!』と言い切らなくてはなりません)
> >488
> (3)の解のx,y,zを、全て整数比の無理数とおきます。
> (4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
> (4)のx,y,zは全て有理数となり得ます。
>
> この場合、式 s^n+t^n=u^n…(C) は成立します。
>
> ただ、(3)のx,y,zを、全て整数比の無理数とおいたとき、
> 式が、成立するかは、不明です。
式(C) が成立するかは不明。
だから、
式(C) が成り立たない、とは言えない。
です。
(あなたが証明を完成させるには、
『式(C) が成り立たない!』と言い切らなくてはなりません)
501日高
2021/03/08(月) 10:22:43.44ID:GHSiXk/i >499
式(C) が成立するか不明なら、フェルマーが成り立つとも成り立たないとも言えません。何も言えません。
式(C)は、(1)により、成立しないことが、わかります。
式(C) が成立するか不明なら、フェルマーが成り立つとも成り立たないとも言えません。何も言えません。
式(C)は、(1)により、成立しないことが、わかります。
502日高
2021/03/08(月) 10:33:46.07ID:GHSiXk/i >500
(あなたが証明を完成させるには、
『式(C) が成り立たない!』と言い切らなくてはなりません)
式(C)は、(1)により、成立しないことが、わかります。
(あなたが証明を完成させるには、
『式(C) が成り立たない!』と言い切らなくてはなりません)
式(C)は、(1)により、成立しないことが、わかります。
503132人目の素数さん
2021/03/08(月) 10:34:58.85ID:FPy8Zm7b >>502
> >500
> (あなたが証明を完成させるには、
> 『式(C) が成り立たない!』と言い切らなくてはなりません)
>
> 式(C)は、(1)により、成立しないことが、わかります。
(1)ってなんですか?
> >500
> (あなたが証明を完成させるには、
> 『式(C) が成り立たない!』と言い切らなくてはなりません)
>
> 式(C)は、(1)により、成立しないことが、わかります。
(1)ってなんですか?
504日高
2021/03/08(月) 10:36:01.56ID:GHSiXk/i 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
505日高
2021/03/08(月) 10:36:38.00ID:GHSiXk/i 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
506日高
2021/03/08(月) 10:38:04.45ID:GHSiXk/i 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
507日高
2021/03/08(月) 10:40:31.77ID:GHSiXk/i >503
(1)ってなんですか?
すみません。1の間違いです。
504のことです。
(1)ってなんですか?
すみません。1の間違いです。
504のことです。
508132人目の素数さん
2021/03/08(月) 10:51:14.90ID:FPy8Zm7b >>507
> >503
> (1)ってなんですか?
>
> すみません。1の間違いです。
> 504のことです。
その>>1,504 の中身を、レス番 428、431、433、455、460、465、467、484、
487、488、492、500 と議論してきました。現状の結論が >>500 です。
> (3)の解のx,y,zを、全て整数比の無理数とおきます。
> (4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
> (4)のx,y,zは全て有理数となり得ます。
>
> この場合、式 s^n+t^n=u^n…(C) は成立します。
>
> ただ、(3)のx,y,zを、全て整数比の無理数とおいたとき、
> 式が、成立するかは、不明です。
式(C) が成立するかは不明。
だから、
式(C) が成り立たない、とは言えない。
です。
(あなたが証明を完成させるには、
『式(C) が成り立たない!』と言い切らなくてはなりません)
反論をお願いします。
> >503
> (1)ってなんですか?
>
> すみません。1の間違いです。
> 504のことです。
その>>1,504 の中身を、レス番 428、431、433、455、460、465、467、484、
487、488、492、500 と議論してきました。現状の結論が >>500 です。
> (3)の解のx,y,zを、全て整数比の無理数とおきます。
> (4)の解のx,y,zは、(3)の解のx,y,zの定数倍です。
> (4)のx,y,zは全て有理数となり得ます。
>
> この場合、式 s^n+t^n=u^n…(C) は成立します。
>
> ただ、(3)のx,y,zを、全て整数比の無理数とおいたとき、
> 式が、成立するかは、不明です。
式(C) が成立するかは不明。
だから、
式(C) が成り立たない、とは言えない。
です。
(あなたが証明を完成させるには、
『式(C) が成り立たない!』と言い切らなくてはなりません)
反論をお願いします。
509132人目の素数さん
2021/03/08(月) 11:17:22.76ID:IF5SEJXL 504 名前:日高[] 投稿日:2021/03/08(月) 10:36:01.56 ID:GHSiXk/i [10/13]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
505 名前:日高[] 投稿日:2021/03/08(月) 10:36:38.00 ID:GHSiXk/i [11/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
506 名前:日高[] 投稿日:2021/03/08(月) 10:38:04.45 ID:GHSiXk/i [12/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
505 名前:日高[] 投稿日:2021/03/08(月) 10:36:38.00 ID:GHSiXk/i [11/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
506 名前:日高[] 投稿日:2021/03/08(月) 10:38:04.45 ID:GHSiXk/i [12/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/08(月) 11:17:55.55ID:IF5SEJXL
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/08(月) 11:18:35.02ID:IF5SEJXL
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
512恣意的にr=2とします
2021/03/08(月) 11:19:18.91ID:IF5SEJXL 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
513日高
2021/03/08(月) 11:19:58.50ID:GHSiXk/i >504
(あなたが証明を完成させるには、
『式(C) が成り立たない!』と言い切らなくてはなりません)
504により、式(C)は成り立ちません。
(あなたが証明を完成させるには、
『式(C) が成り立たない!』と言い切らなくてはなりません)
504により、式(C)は成り立ちません。
514132人目の素数さん
2021/03/08(月) 13:38:25.79ID:jgOmrYDI ただ言い切ってもだめ。理由を述べてください。
515日高
2021/03/08(月) 14:56:14.04ID:GHSiXk/i >514
ただ言い切ってもだめ。理由を述べてください。
(4)は、z,xを有理数とすると、yが無理数となるからです。
ただ言い切ってもだめ。理由を述べてください。
(4)は、z,xを有理数とすると、yが無理数となるからです。
516日高
2021/03/08(月) 14:58:04.81ID:GHSiXk/i 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
517日高
2021/03/08(月) 14:58:49.57ID:GHSiXk/i 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
518日高
2021/03/08(月) 14:59:36.61ID:GHSiXk/i 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
519132人目の素数さん
2021/03/08(月) 15:03:03.63ID:jgOmrYDI520日高
2021/03/08(月) 16:02:47.58ID:GHSiXk/i >519
> (4)は、z,xを有理数とすると、yが無理数となるからです。
その理由を述べてください。
(3)はyが有理数のとき、xは無理数となる。ので、(3)のx,yは、整数比となりません。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。からです。
> (4)は、z,xを有理数とすると、yが無理数となるからです。
その理由を述べてください。
(3)はyが有理数のとき、xは無理数となる。ので、(3)のx,yは、整数比となりません。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。からです。
521132人目の素数さん
2021/03/08(月) 16:21:09.97ID:jgOmrYDI > (4)の解は(3)の解のa^{1/(n-1)}倍となる。からです。
でもa^{1/(n-1)}は無理数ですよね?
でもa^{1/(n-1)}は無理数ですよね?
522132人目の素数さん
2021/03/08(月) 16:23:27.76ID:IF5SEJXL (4)は、z,xを有理数とすると、yが無理数となるからです。
516 名前:日高[] 投稿日:2021/03/08(月) 14:58:04.81 ID:GHSiXk/i [16/19]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
517 名前:日高[] 投稿日:2021/03/08(月) 14:58:49.57 ID:GHSiXk/i [17/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
518 名前:日高[] 投稿日:2021/03/08(月) 14:59:36.61 ID:GHSiXk/i [18/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
516 名前:日高[] 投稿日:2021/03/08(月) 14:58:04.81 ID:GHSiXk/i [16/19]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
517 名前:日高[] 投稿日:2021/03/08(月) 14:58:49.57 ID:GHSiXk/i [17/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
518 名前:日高[] 投稿日:2021/03/08(月) 14:59:36.61 ID:GHSiXk/i [18/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/08(月) 16:23:59.70ID:IF5SEJXL
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/08(月) 16:24:29.56ID:IF5SEJXL
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
525恣意的にr=2とします
2021/03/08(月) 16:25:04.01ID:IF5SEJXL 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/08(月) 16:25:44.65ID:IF5SEJXL
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/08(月) 16:26:03.41ID:IF5SEJXL
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
528日高
2021/03/08(月) 17:20:25.66ID:GHSiXk/i >521
でもa^{1/(n-1)}は無理数ですよね?
rが有理数の場合は、a^{1/(n-1)}は無理数となります。
でもa^{1/(n-1)}は無理数ですよね?
rが有理数の場合は、a^{1/(n-1)}は無理数となります。
529日高
2021/03/08(月) 17:21:58.76ID:GHSiXk/i 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
530132人目の素数さん
2021/03/08(月) 17:22:42.29ID:jgOmrYDI > rが有理数の場合は、a^{1/(n-1)}は無理数となります。
だから君の証明は破綻するのでは?
だから君の証明は破綻するのでは?
531日高
2021/03/08(月) 17:22:47.34ID:GHSiXk/i 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
532日高
2021/03/08(月) 17:23:26.94ID:GHSiXk/i 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
533日高
2021/03/08(月) 17:25:01.68ID:GHSiXk/i >530
だから君の証明は破綻するのでは?
どうしてでしょうか?
だから君の証明は破綻するのでは?
どうしてでしょうか?
534132人目の素数さん
2021/03/08(月) 17:42:19.81ID:jgOmrYDI >>533
(3)でyが有理数の場合を調べてもなんの意味もありません。
(3)でyが有理数の場合を調べてもなんの意味もありません。
535日高
2021/03/08(月) 17:54:49.75ID:GHSiXk/i >534
(3)でyが有理数の場合を調べてもなんの意味もありません。
どうしてでしょうか?
(3)でyが有理数の場合を調べてもなんの意味もありません。
どうしてでしょうか?
536132人目の素数さん
2021/03/08(月) 18:44:46.81ID:FPy8Zm7b2021/03/08(月) 18:53:13.86ID:IF5SEJXL
529 名前:日高[] 投稿日:2021/03/08(月) 17:21:58.76 ID:GHSiXk/i [21/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
531 名前:日高[] 投稿日:2021/03/08(月) 17:22:47.34 ID:GHSiXk/i [22/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
532 名前:日高[] 投稿日:2021/03/08(月) 17:23:26.94 ID:GHSiXk/i [23/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
531 名前:日高[] 投稿日:2021/03/08(月) 17:22:47.34 ID:GHSiXk/i [22/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
532 名前:日高[] 投稿日:2021/03/08(月) 17:23:26.94 ID:GHSiXk/i [23/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
538132人目の素数さん
2021/03/08(月) 19:16:10.90ID:jgOmrYDI >>535
(4)の有理数解は(3)の無理数解のうち特別な形のものに対応するからです。
(4)の有理数解は(3)の無理数解のうち特別な形のものに対応するからです。
539日高
2021/03/08(月) 19:50:04.86ID:GHSiXk/i >536
式(C) が成立するかは不明。
だから、
式(C) が成り立たない、とは言えない。
です。
式(C)は、(4)のx,y,zを有理数とすると、成り立ちません。
式(C) が成立するかは不明。
だから、
式(C) が成り立たない、とは言えない。
です。
式(C)は、(4)のx,y,zを有理数とすると、成り立ちません。
540日高
2021/03/08(月) 19:58:49.92ID:GHSiXk/i >538
(4)の有理数解は(3)の無理数解のうち特別な形のものに対応するからです。
よく、意味がわからないので、詳しく説明していただけないでしょうか。
(4)の有理数解は(3)の無理数解のうち特別な形のものに対応するからです。
よく、意味がわからないので、詳しく説明していただけないでしょうか。
541132人目の素数さん
2021/03/08(月) 20:05:30.83ID:HQBGlJDa x^n+y^n=(x+n^{1/(n-1)})^n…(3)
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
で(4)はx^n+y^n=(x+r)^n…(1)と同じ。
本当に探したい(4)の有理数解は
> (4)の解は(3)の解のa^{1/(n-1)}倍となる。
とのことだから、(3)の「有理数/a^{1/(n-1)}」の形の無理数である。
これを調べていないから日高の証明は大間違い。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
で(4)はx^n+y^n=(x+r)^n…(1)と同じ。
本当に探したい(4)の有理数解は
> (4)の解は(3)の解のa^{1/(n-1)}倍となる。
とのことだから、(3)の「有理数/a^{1/(n-1)}」の形の無理数である。
これを調べていないから日高の証明は大間違い。
2021/03/08(月) 20:42:45.06ID:IF5SEJXL
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/08(月) 20:43:08.78ID:IF5SEJXL
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
544132人目の素数さん
2021/03/09(火) 00:25:41.13ID:S77lnLPk >>485
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2xとおく、
左辺
x^3+y^3=9x^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
よってx^3+y^3=(x+3^{1/(3-1)})^3
このx、y、zは明らかに(3)の解である。
このとき、z=x+3^(1/2)=(3/8)(3^(1/6))+(9/8)(3^(1/2))+(3/8)(3^(5/6))=(9^(1/3))x
すなわち、x:y:z=x:2x:(9^(1/3))x=1:2:9^(1/3)
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2xとおく、
左辺
x^3+y^3=9x^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
よってx^3+y^3=(x+3^{1/(3-1)})^3
このx、y、zは明らかに(3)の解である。
このとき、z=x+3^(1/2)=(3/8)(3^(1/6))+(9/8)(3^(1/2))+(3/8)(3^(5/6))=(9^(1/3))x
すなわち、x:y:z=x:2x:(9^(1/3))x=1:2:9^(1/3)
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
545132人目の素数さん
2021/03/09(火) 00:29:46.69ID:S77lnLPk >>529
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在したので、
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在したので、
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
546132人目の素数さん
2021/03/09(火) 06:31:06.11ID:+hAgBJhA >>539
> >536
> 式(C) が成立するかは不明。
> だから、
> 式(C) が成り立たない、とは言えない。
> です。
>
> 式(C)は、(4)のx,y,zを有理数とすると、成り立ちません。
どうしてでしょうか。
成り立たない理由は無いように思いますが。
> >536
> 式(C) が成立するかは不明。
> だから、
> 式(C) が成り立たない、とは言えない。
> です。
>
> 式(C)は、(4)のx,y,zを有理数とすると、成り立ちません。
どうしてでしょうか。
成り立たない理由は無いように思いますが。
547日高
2021/03/09(火) 07:11:48.59ID:a/wD8MyT >541
本当に探したい(4)の有理数解は(3)の「有理数/a^{1/(n-1)}」の形の無理数である。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)に、「有理数/a^{1/(n-1)}」の形の無理数を代入
すると、解が、整数比となるかは、不明です。
本当に探したい(4)の有理数解は(3)の「有理数/a^{1/(n-1)}」の形の無理数である。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)に、「有理数/a^{1/(n-1)}」の形の無理数を代入
すると、解が、整数比となるかは、不明です。
548日高
2021/03/09(火) 07:27:37.79ID:a/wD8MyT >544
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
すみません。確かに存在します。
x=1,y=2,z=9^(1/3)と同じ比の(3)の解が存在します。
すみません。確かに存在します。
549132人目の素数さん
2021/03/09(火) 07:33:18.36ID:Z4Ed3n5S 日高は「任意の解は定数倍することで(3)の解にできる」ということを利用して証明したいらしいが、
整数解(あるいは有理数解)を(3)の解になるように定数倍すると、(3)のrが無理数であることからyは必ず無理数となる
(3)の解のyが無理数である場合について、日高はまったく考察していない
つまり日高の証明(自称)は破綻している
もちろん、日高はこの指摘が理解できないので、この破綻した証明(自称)を主張し続けるであろう
整数解(あるいは有理数解)を(3)の解になるように定数倍すると、(3)のrが無理数であることからyは必ず無理数となる
(3)の解のyが無理数である場合について、日高はまったく考察していない
つまり日高の証明(自称)は破綻している
もちろん、日高はこの指摘が理解できないので、この破綻した証明(自称)を主張し続けるであろう
550日高
2021/03/09(火) 07:53:20.08ID:a/wD8MyT >545
x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
しかし、(4)のx,y,zは、有理数となりません。
x^n+y^n=z^nの、x,y,zが有理数とならないとは言えません。
しかし、(4)のx,y,zは、有理数となりません。
551日高
2021/03/09(火) 07:59:30.38ID:a/wD8MyT >546
> 式(C)は、(4)のx,y,zを有理数とすると、成り立ちません。
どうしてでしょうか。
成り立たない理由は無いように思いますが。
(3)の、x,yを有理数とすると、成り立たないので、
(4)の、x,yを有理数としても、成り立成り立ちません。
> 式(C)は、(4)のx,y,zを有理数とすると、成り立ちません。
どうしてでしょうか。
成り立たない理由は無いように思いますが。
(3)の、x,yを有理数とすると、成り立たないので、
(4)の、x,yを有理数としても、成り立成り立ちません。
552日高
2021/03/09(火) 08:03:57.07ID:a/wD8MyT >549
(3)の解のyが無理数である場合について、日高はまったく考察していない
その場合は、x,y,zが有理数の場合と同じとなります。
(3)の解のyが無理数である場合について、日高はまったく考察していない
その場合は、x,y,zが有理数の場合と同じとなります。
553132人目の素数さん
2021/03/09(火) 08:30:30.53ID:+hAgBJhA >>551
> >546
> > 式(C)は、(4)のx,y,zを有理数とすると、成り立ちません。
>
> どうしてでしょうか。
> 成り立たない理由は無いように思いますが。
>
> (3)の、x,yを有理数とすると、成り立たないので、
> (4)の、x,yを有理数としても、成り立成り立ちません。
(4) の x,y,z を有理数にするとき、
(3) の x,y は無理数ですよ。
他の、式 s^n+t^n=u^n…(C) が成り立たない理由をお願いします。
無いなら無いとおっしゃって下さい。
> >546
> > 式(C)は、(4)のx,y,zを有理数とすると、成り立ちません。
>
> どうしてでしょうか。
> 成り立たない理由は無いように思いますが。
>
> (3)の、x,yを有理数とすると、成り立たないので、
> (4)の、x,yを有理数としても、成り立成り立ちません。
(4) の x,y,z を有理数にするとき、
(3) の x,y は無理数ですよ。
他の、式 s^n+t^n=u^n…(C) が成り立たない理由をお願いします。
無いなら無いとおっしゃって下さい。
2021/03/09(火) 08:31:51.43ID:PaF6WxXa
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/09(火) 08:32:42.04ID:PaF6WxXa
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
556恣意的にr=2とします
2021/03/09(火) 08:33:12.88ID:PaF6WxXa 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
557日高
2021/03/09(火) 08:41:26.35ID:a/wD8MyT >553
他の、式 s^n+t^n=u^n…(C) が成り立たない理由をお願いします。
(4)以外には、ありません。
他の、式 s^n+t^n=u^n…(C) が成り立たない理由をお願いします。
(4)以外には、ありません。
558日高
2021/03/09(火) 08:42:35.29ID:a/wD8MyT 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
559日高
2021/03/09(火) 08:43:14.81ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
560日高
2021/03/09(火) 08:43:53.92ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
561今日も日高は愚かですね
2021/03/09(火) 09:09:04.92ID:PaF6WxXa 558 名前:日高[] 投稿日:2021/03/09(火) 08:42:35.29 ID:a/wD8MyT [7/9]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
559 名前:日高[] 投稿日:2021/03/09(火) 08:43:14.81 ID:a/wD8MyT [8/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
560 名前:日高[] 投稿日:2021/03/09(火) 08:43:53.92 ID:a/wD8MyT [9/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
559 名前:日高[] 投稿日:2021/03/09(火) 08:43:14.81 ID:a/wD8MyT [8/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
560 名前:日高[] 投稿日:2021/03/09(火) 08:43:53.92 ID:a/wD8MyT [9/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/09(火) 09:10:01.82ID:PaF6WxXa
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/09(火) 09:11:06.92ID:PaF6WxXa
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
564132人目の素数さん
2021/03/09(火) 09:12:53.30ID:Z4Ed3n5S >>552
> >549
> (3)の解のyが無理数である場合について、日高はまったく考察していない
>
> その場合は、x,y,zが有理数の場合と同じとなります。
いつも通り予想通りのまったく反論になっていない回答をありがとうございます
「x,y,zが有理数の場合」はフェルマーの最終定理そのものと同値なので使えません、使ってはいけません
使えるんならその時点で証明終了してますよ
「x,y,zが有理数の場合」を考えるためには「(3)の解のyが無理数である場合」を考えなければいけない(のに考えていない)って指摘なんですけど、これまた予想通り理解できていませんでしたね
やっぱり日高はだめですね
> >549
> (3)の解のyが無理数である場合について、日高はまったく考察していない
>
> その場合は、x,y,zが有理数の場合と同じとなります。
いつも通り予想通りのまったく反論になっていない回答をありがとうございます
「x,y,zが有理数の場合」はフェルマーの最終定理そのものと同値なので使えません、使ってはいけません
使えるんならその時点で証明終了してますよ
「x,y,zが有理数の場合」を考えるためには「(3)の解のyが無理数である場合」を考えなければいけない(のに考えていない)って指摘なんですけど、これまた予想通り理解できていませんでしたね
やっぱり日高はだめですね
565132人目の素数さん
2021/03/09(火) 09:59:04.49ID:+hAgBJhA566日高
2021/03/09(火) 10:25:44.13ID:a/wD8MyT >565
でもその (4) を使っても、 (C) が成り立たない事は証明できないでしょう。(>>553)
やはり、式 s^n+t^n=u^n…(C) が成り立つかは不明、という事で宜しいでしょうか?
(4) を使うと、z,xが有理数のとき、yは有理数となりません。
でもその (4) を使っても、 (C) が成り立たない事は証明できないでしょう。(>>553)
やはり、式 s^n+t^n=u^n…(C) が成り立つかは不明、という事で宜しいでしょうか?
(4) を使うと、z,xが有理数のとき、yは有理数となりません。
567日高
2021/03/09(火) 10:30:15.09ID:a/wD8MyT >564
「x,y,zが有理数の場合」を考えるためには「(3)の解のyが無理数である場合」を考えなければいけない
「(3)の解のyが無理数である場合」は、「x,y,zが有理数の場合」を考えることと
同じとなります。
「x,y,zが有理数の場合」を考えるためには「(3)の解のyが無理数である場合」を考えなければいけない
「(3)の解のyが無理数である場合」は、「x,y,zが有理数の場合」を考えることと
同じとなります。
568日高
2021/03/09(火) 10:31:34.82ID:a/wD8MyT 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
569日高
2021/03/09(火) 10:32:16.92ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
570日高
2021/03/09(火) 10:33:00.33ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
571132人目の素数さん
2021/03/09(火) 10:52:27.27ID:+hAgBJhA572日高
2021/03/09(火) 11:31:10.21ID:a/wD8MyT >571
> (4) を使うと、z,xが有理数のとき、yは有理数となりません。
すみません。
よく、意味がわからないので、詳しく説明していただけないでしょうか。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(an)^{1/(n-1)}は、有理数となるので、xを有理数とすると、zは、有理数となります。
(3)のx,yが整数比とならないので、(4)のyは無理数となります。
> (4) を使うと、z,xが有理数のとき、yは有理数となりません。
すみません。
よく、意味がわからないので、詳しく説明していただけないでしょうか。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(an)^{1/(n-1)}は、有理数となるので、xを有理数とすると、zは、有理数となります。
(3)のx,yが整数比とならないので、(4)のyは無理数となります。
2021/03/09(火) 12:50:59.31ID:PaF6WxXa
568 名前:日高[] 投稿日:2021/03/09(火) 10:31:34.82 ID:a/wD8MyT [12/15]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
569 名前:日高[] 投稿日:2021/03/09(火) 10:32:16.92 ID:a/wD8MyT [13/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
570 名前:日高[] 投稿日:2021/03/09(火) 10:33:00.33 ID:a/wD8MyT [14/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
569 名前:日高[] 投稿日:2021/03/09(火) 10:32:16.92 ID:a/wD8MyT [13/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
570 名前:日高[] 投稿日:2021/03/09(火) 10:33:00.33 ID:a/wD8MyT [14/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/09(火) 12:51:33.13ID:PaF6WxXa
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
575恣意的にr=2とします
2021/03/09(火) 12:52:13.87ID:PaF6WxXa 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
576日高
2021/03/09(火) 13:04:09.55ID:a/wD8MyT 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
577日高
2021/03/09(火) 13:05:37.36ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
578日高
2021/03/09(火) 13:06:22.92ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
579日高
2021/03/09(火) 13:41:51.28ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
580日高
2021/03/09(火) 13:43:06.83ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
2021/03/09(火) 13:50:16.16ID:PaF6WxXa
576 名前:日高[] 投稿日:2021/03/09(火) 13:04:09.55 ID:a/wD8MyT [16/20]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
577 名前:日高[] 投稿日:2021/03/09(火) 13:05:37.36 ID:a/wD8MyT [17/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
578 名前:日高[] 投稿日:2021/03/09(火) 13:06:22.92 ID:a/wD8MyT [18/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
579 名前:日高[] 投稿日:2021/03/09(火) 13:41:51.28 ID:a/wD8MyT [19/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
580 名前:日高[] 投稿日:2021/03/09(火) 13:43:06.83 ID:a/wD8MyT [20/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
577 名前:日高[] 投稿日:2021/03/09(火) 13:05:37.36 ID:a/wD8MyT [17/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
578 名前:日高[] 投稿日:2021/03/09(火) 13:06:22.92 ID:a/wD8MyT [18/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
579 名前:日高[] 投稿日:2021/03/09(火) 13:41:51.28 ID:a/wD8MyT [19/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
580 名前:日高[] 投稿日:2021/03/09(火) 13:43:06.83 ID:a/wD8MyT [20/20]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
2021/03/09(火) 13:50:46.25ID:PaF6WxXa
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
583恣意的にr=2とします
2021/03/09(火) 13:51:10.56ID:PaF6WxXa 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
584日高
2021/03/09(火) 15:55:23.58ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
585132人目の素数さん
2021/03/09(火) 16:21:44.29ID:PaF6WxXa 584 名前:日高[] 投稿日:2021/03/09(火) 15:55:23.58 ID:a/wD8MyT [21/21]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
586日高
2021/03/09(火) 17:08:03.13ID:a/wD8MyT 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
587日高
2021/03/09(火) 17:08:46.75ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
588日高
2021/03/09(火) 17:09:24.35ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
589日高
2021/03/09(火) 17:20:37.94ID:a/wD8MyT (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
590日高
2021/03/09(火) 18:03:18.01ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
591日高
2021/03/09(火) 18:09:55.22ID:a/wD8MyT (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
592132人目の素数さん
2021/03/09(火) 19:03:22.67ID:+hAgBJhA >>572
> >571
> > (4) を使うと、z,xが有理数のとき、yは有理数となりません。
>
> すみません。
> よく、意味がわからないので、詳しく説明していただけないでしょうか。
>
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
>
> (an)^{1/(n-1)}は、有理数となるので、xを有理数とすると、zは、有理数となります。
> (3)のx,yが整数比とならないので、(4)のyは無理数となります。
x^n+y^n=(x+n^{1/(n-1)})^n…(3) において、
x = s*n^{1/(n-1)}
y = t*n^{1/(n-1)} (s,tは有理数)
とおくと、(3) の x,y は整数比になります。
> >571
> > (4) を使うと、z,xが有理数のとき、yは有理数となりません。
>
> すみません。
> よく、意味がわからないので、詳しく説明していただけないでしょうか。
>
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
>
> (an)^{1/(n-1)}は、有理数となるので、xを有理数とすると、zは、有理数となります。
> (3)のx,yが整数比とならないので、(4)のyは無理数となります。
x^n+y^n=(x+n^{1/(n-1)})^n…(3) において、
x = s*n^{1/(n-1)}
y = t*n^{1/(n-1)} (s,tは有理数)
とおくと、(3) の x,y は整数比になります。
2021/03/09(火) 19:20:36.69ID:PaF6WxXa
586 名前:日高[] 投稿日:2021/03/09(火) 17:08:03.13 ID:a/wD8MyT [22/27]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
587 名前:日高[] 投稿日:2021/03/09(火) 17:08:46.75 ID:a/wD8MyT [23/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
588 名前:日高[] 投稿日:2021/03/09(火) 17:09:24.35 ID:a/wD8MyT [24/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
589 名前:日高[] 投稿日:2021/03/09(火) 17:20:37.94 ID:a/wD8MyT [25/27]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
587 名前:日高[] 投稿日:2021/03/09(火) 17:08:46.75 ID:a/wD8MyT [23/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
588 名前:日高[] 投稿日:2021/03/09(火) 17:09:24.35 ID:a/wD8MyT [24/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
589 名前:日高[] 投稿日:2021/03/09(火) 17:20:37.94 ID:a/wD8MyT [25/27]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
2021/03/09(火) 19:21:03.90ID:PaF6WxXa
590 名前:日高[] 投稿日:2021/03/09(火) 18:03:18.01 ID:a/wD8MyT [26/27]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
591 名前:日高[] 投稿日:2021/03/09(火) 18:09:55.22 ID:a/wD8MyT [27/27]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
591 名前:日高[] 投稿日:2021/03/09(火) 18:09:55.22 ID:a/wD8MyT [27/27]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
2021/03/09(火) 19:21:35.15ID:PaF6WxXa
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
596恣意的にr=2とします
2021/03/09(火) 19:21:54.97ID:PaF6WxXa 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
597132人目の素数さん
2021/03/09(火) 19:38:04.14ID:1OF36ZJO >>591
これは証明の一部なんですか? それとも単なるおまけ?
これは証明の一部なんですか? それとも単なるおまけ?
598日高
2021/03/09(火) 19:53:31.31ID:a/wD8MyT >597
これは証明の一部なんですか? それとも単なるおまけ?
x,y,zが無理数で、整数比となるならば、有理数で整数比となる。
ので、単なるおまけです。
これは証明の一部なんですか? それとも単なるおまけ?
x,y,zが無理数で、整数比となるならば、有理数で整数比となる。
ので、単なるおまけです。
599日高
2021/03/09(火) 19:55:03.57ID:a/wD8MyT 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
600日高
2021/03/09(火) 19:55:53.56ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
601日高
2021/03/09(火) 19:56:30.82ID:a/wD8MyT 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
602日高
2021/03/09(火) 19:57:18.48ID:a/wD8MyT (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
603132人目の素数さん
2021/03/09(火) 20:08:41.88ID:S77lnLPk >>599
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
たとえば(3)の解にはx:y=1:2になるものがあり、解の比が同じのx=1,y=2,z=9^(1/3)はx,yが整数比で有理数の(4)の解です。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
たとえば(3)の解にはx:y=1:2になるものがあり、解の比が同じのx=1,y=2,z=9^(1/3)はx,yが整数比で有理数の(4)の解です。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
604132人目の素数さん
2021/03/09(火) 20:09:21.02ID:1OF36ZJO >>598
> >597
> これは証明の一部なんですか? それとも単なるおまけ?
>
> x,y,zが無理数で、整数比となるならば、有理数で整数比となる。
> ので、単なるおまけです。
それはどの式の話ですか?
> >597
> これは証明の一部なんですか? それとも単なるおまけ?
>
> x,y,zが無理数で、整数比となるならば、有理数で整数比となる。
> ので、単なるおまけです。
それはどの式の話ですか?
605132人目の素数さん
2021/03/09(火) 20:49:15.89ID:1OF36ZJO >>601
> 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
> x^2+y^2=(x+2)^2に、y=4を代入する。
> ピタゴラス数x=3、y=4、z=5を得る。
y=2p/qを代入すれば4x+4=4p^2/q^2,x+1=p^2/q^2,x=(p^2-q^2)/q^2,z=x+2=(p^2+q^2)/q^2となって
q^2を掛ければx=p^2-q^2,y=2pq,z=p^2+q^2が得られる。
この形はとっくの昔に知られている。
p,qに具体的な数値を入れても新鮮味はまったくない。
つまらないから、やめな。
> 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
> x^2+y^2=(x+2)^2に、y=4を代入する。
> ピタゴラス数x=3、y=4、z=5を得る。
y=2p/qを代入すれば4x+4=4p^2/q^2,x+1=p^2/q^2,x=(p^2-q^2)/q^2,z=x+2=(p^2+q^2)/q^2となって
q^2を掛ければx=p^2-q^2,y=2pq,z=p^2+q^2が得られる。
この形はとっくの昔に知られている。
p,qに具体的な数値を入れても新鮮味はまったくない。
つまらないから、やめな。
606日高
2021/03/09(火) 20:52:41.21ID:a/wD8MyT >603
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
(4)はx,y,zが有理数の場合は、成立しません。
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
(4)はx,y,zが有理数の場合は、成立しません。
2021/03/09(火) 20:55:41.43ID:PaF6WxXa
599 名前:日高[] 投稿日:2021/03/09(火) 19:55:03.57 ID:a/wD8MyT [29/33]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
600 名前:日高[] 投稿日:2021/03/09(火) 19:55:53.56 ID:a/wD8MyT [30/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
601 名前:日高[] 投稿日:2021/03/09(火) 19:56:30.82 ID:a/wD8MyT [31/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
602 名前:日高[] 投稿日:2021/03/09(火) 19:57:18.48 ID:a/wD8MyT [32/33]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
600 名前:日高[] 投稿日:2021/03/09(火) 19:55:53.56 ID:a/wD8MyT [30/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
601 名前:日高[] 投稿日:2021/03/09(火) 19:56:30.82 ID:a/wD8MyT [31/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
602 名前:日高[] 投稿日:2021/03/09(火) 19:57:18.48 ID:a/wD8MyT [32/33]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
608日高
2021/03/09(火) 20:56:05.57ID:a/wD8MyT >604
> x,y,zが無理数で、整数比となるならば、有理数で整数比となる。
> ので、単なるおまけです。
それはどの式の話ですか?
(3)式の話です。
> x,y,zが無理数で、整数比となるならば、有理数で整数比となる。
> ので、単なるおまけです。
それはどの式の話ですか?
(3)式の話です。
2021/03/09(火) 20:56:20.64ID:PaF6WxXa
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/09(火) 20:56:46.58ID:PaF6WxXa
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
611日高
2021/03/09(火) 21:03:31.31ID:a/wD8MyT >605
p,qに具体的な数値を入れても新鮮味はまったくない。
つまらないから、やめな。
n≧3のときは、yを有理数とすると、xは無理数となります。
p,qに具体的な数値を入れても新鮮味はまったくない。
つまらないから、やめな。
n≧3のときは、yを有理数とすると、xは無理数となります。
2021/03/09(火) 21:09:39.90ID:PaF6WxXa
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
613132人目の素数さん
2021/03/09(火) 21:09:41.84ID:1OF36ZJO >>611
> >605
> p,qに具体的な数値を入れても新鮮味はまったくない。
>
> つまらないから、やめな。
>
> n≧3のときは、yを有理数とすると、xは無理数となります。
何ぼけてるの? n=2の話をしてるんでしょ。
> >605
> p,qに具体的な数値を入れても新鮮味はまったくない。
>
> つまらないから、やめな。
>
> n≧3のときは、yを有理数とすると、xは無理数となります。
何ぼけてるの? n=2の話をしてるんでしょ。
2021/03/09(火) 21:10:08.17ID:PaF6WxXa
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
615132人目の素数さん
2021/03/09(火) 21:10:35.88ID:S77lnLPk >>606
x^2+y^2=(x+√3)^2…(5)
(5)の解に、x,y,zが有理数のものはありません。
(5)の解に、x,y,zが有理数比のものはあります。
(5)の解に有理数のものがないことは、(5)の解に有理数比のものがない証拠になりません。
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
(3)の解に有理数のものがないことは、(3)の解に有理数比のものがない証拠になりません。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
(4)の解は(3)の解と同じ比のものがあるので、
(3)にx、y、zが有理数比のものがあれば、(4)にx、y、zが有理数比のものがあります。
(3)にx、y、zが有理数比のものがなければ、(4)にx、y、zが有理数比のものがありません。
(3)にx、y、zが有理数比のものがあるとも、ないとも、いえないので、
(4)にx、y、zが有理数比のものがあるとも、ないとも、いえません。
(4)はx,y,zが有理数の場合は、成立しないとは、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
x^2+y^2=(x+√3)^2…(5)
(5)の解に、x,y,zが有理数のものはありません。
(5)の解に、x,y,zが有理数比のものはあります。
(5)の解に有理数のものがないことは、(5)の解に有理数比のものがない証拠になりません。
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
05行目、(3)はyを有理数とすると、xは無理数となる。
(3)の解に有理数のものがないことは、(3)の解に有理数比のものがない証拠になりません。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
(4)の解は(3)の解と同じ比のものがあるので、
(3)にx、y、zが有理数比のものがあれば、(4)にx、y、zが有理数比のものがあります。
(3)にx、y、zが有理数比のものがなければ、(4)にx、y、zが有理数比のものがありません。
(3)にx、y、zが有理数比のものがあるとも、ないとも、いえないので、
(4)にx、y、zが有理数比のものがあるとも、ないとも、いえません。
(4)はx,y,zが有理数の場合は、成立しないとは、いえません。
よって、(3)のすべての解と、解の比が同じのx^n+y^n=z^nについて、
(3)の解にx、y、zが有理数比のものがあるともないとも言えないので、
x^n+y^n=z^nは自然数解を持つとも持たないとも言えません。
つまり、x^n+y^n=z^nは自然数解を持つとは言えませんし、
同時に、x^n+y^n=z^nは自然数解を持たないとは言えません。
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
616132人目の素数さん
2021/03/09(火) 22:05:25.13ID:1OF36ZJO >>608
> >604
> > x,y,zが無理数で、整数比となるならば、有理数で整数比となる。
> > ので、単なるおまけです。
>
> それはどの式の話ですか?
>
> (3)式の話です。
証明は?
> >604
> > x,y,zが無理数で、整数比となるならば、有理数で整数比となる。
> > ので、単なるおまけです。
>
> それはどの式の話ですか?
>
> (3)式の話です。
証明は?
617132人目の素数さん
2021/03/10(水) 06:21:27.21ID:ChF3fhkM 日高氏、 >>592 に返信をお願いします。
618日高
2021/03/10(水) 07:48:33.25ID:d9ZHpgHj >613
何ぼけてるの? n=2の話をしてるんでしょ。
そうですね。
何ぼけてるの? n=2の話をしてるんでしょ。
そうですね。
619日高
2021/03/10(水) 07:56:53.19ID:d9ZHpgHj >615
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
(4)は、x,y,zが有理数のとき、成立しません。
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
(4)は、x,y,zが有理数のとき、成立しません。
620132人目の素数さん
2021/03/10(水) 08:00:41.51ID:d9ZHpgHj >616
証明は?
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
証明は?
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
2021/03/10(水) 08:06:52.74ID:h1qYjZvj
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
735 名前:132人目の素数さん[sage] 投稿日:2021/01/30(土) 08:11:49.70 ID:m5CD2G+0
今日も日高は愚かですね
例え10年続けてもかわらないのでしょう
2021/03/10(水) 08:07:32.48ID:h1qYjZvj
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
623恣意的にr=2とします
2021/03/10(水) 08:08:07.11ID:h1qYjZvj 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
624132人目の素数さん
2021/03/10(水) 08:08:38.87ID:h1qYjZvj 1 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 12:23:11.66 ID:FbLTf6OQ [1/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/03/04(木) 12:24:43.66 ID:FbLTf6OQ [2/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
3 名前:日高[] 投稿日:2021/03/04(木) 12:25:44.50 ID:FbLTf6OQ [3/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/03/04(木) 12:24:43.66 ID:FbLTf6OQ [2/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
3 名前:日高[] 投稿日:2021/03/04(木) 12:25:44.50 ID:FbLTf6OQ [3/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
625132人目の素数さん
2021/03/10(水) 08:09:20.44ID:h1qYjZvj 4 名前:日高[] 投稿日:2021/03/04(木) 12:26:29.65 ID:FbLTf6OQ [4/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
5 名前:日高[] 投稿日:2021/03/04(木) 12:27:13.78 ID:FbLTf6OQ [5/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
13 名前:日高[] 投稿日:2021/03/04(木) 13:01:25.48 ID:FbLTf6OQ [7/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
15 名前:日高[] 投稿日:2021/03/04(木) 13:02:04.57 ID:FbLTf6OQ [8/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
5 名前:日高[] 投稿日:2021/03/04(木) 12:27:13.78 ID:FbLTf6OQ [5/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
13 名前:日高[] 投稿日:2021/03/04(木) 13:01:25.48 ID:FbLTf6OQ [7/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
15 名前:日高[] 投稿日:2021/03/04(木) 13:02:04.57 ID:FbLTf6OQ [8/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
626日高
2021/03/10(水) 08:09:54.87ID:d9ZHpgHj >617
日高氏、 >>592 に返信をお願いします。
x^n+y^n=(x+n^{1/(n-1)})^n…(3) において、
x = s*n^{1/(n-1)}
y = t*n^{1/(n-1)} (s,tは有理数)
とおくと、(3) の x,y は整数比になります。
(3) の x,y は整数比になります。が、成立するかは、不明です。
そこで、
s^n+t^n=(s+1)^nと同じなので、(4)に当てはめると、成立しません。
日高氏、 >>592 に返信をお願いします。
x^n+y^n=(x+n^{1/(n-1)})^n…(3) において、
x = s*n^{1/(n-1)}
y = t*n^{1/(n-1)} (s,tは有理数)
とおくと、(3) の x,y は整数比になります。
(3) の x,y は整数比になります。が、成立するかは、不明です。
そこで、
s^n+t^n=(s+1)^nと同じなので、(4)に当てはめると、成立しません。
627132人目の素数さん
2021/03/10(水) 08:09:57.03ID:h1qYjZvj 16 名前:日高[] 投稿日:2021/03/04(木) 13:02:41.68 ID:FbLTf6OQ [9/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
17 名前:日高[] 投稿日:2021/03/04(木) 13:03:27.41 ID:FbLTf6OQ [10/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
34 名前:日高[] 投稿日:2021/03/04(木) 17:56:47.48 ID:FbLTf6OQ [18/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
35 名前:日高[] 投稿日:2021/03/04(木) 17:58:58.68 ID:FbLTf6OQ [19/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
36 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:01:10.47 ID:FbLTf6OQ [20/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
17 名前:日高[] 投稿日:2021/03/04(木) 13:03:27.41 ID:FbLTf6OQ [10/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
34 名前:日高[] 投稿日:2021/03/04(木) 17:56:47.48 ID:FbLTf6OQ [18/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
35 名前:日高[] 投稿日:2021/03/04(木) 17:58:58.68 ID:FbLTf6OQ [19/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
36 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:01:10.47 ID:FbLTf6OQ [20/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
628132人目の素数さん
2021/03/10(水) 08:10:34.08ID:h1qYjZvj 38 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:09:13.45 ID:FbLTf6OQ [21/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/32]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/32]
>40
2*3=3*2であることは認めますか?
はい。
42 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:27:19.56 ID:FbLTf6OQ [24/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7/3を代入する。
ピタゴラス数x=13、y=84、z=85を得る。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/32]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/32]
>37
AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/32]
>40
2*3=3*2であることは認めますか?
はい。
42 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:27:19.56 ID:FbLTf6OQ [24/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7/3を代入する。
ピタゴラス数x=13、y=84、z=85を得る。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/32]
>44
AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
629132人目の素数さん
2021/03/10(水) 08:10:46.12ID:XTLHVucf630132人目の素数さん
2021/03/10(水) 08:11:43.84ID:h1qYjZvj 47 名前:日高[] 投稿日:2021/03/04(木) 19:34:07.46 ID:FbLTf6OQ [27/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
57 名前:日高[] 投稿日:2021/03/04(木) 19:47:13.22 ID:FbLTf6OQ [29/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
59 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:55:21.94 ID:FbLTf6OQ [31/32]
【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
57 名前:日高[] 投稿日:2021/03/04(木) 19:47:13.22 ID:FbLTf6OQ [29/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
59 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:55:21.94 ID:FbLTf6OQ [31/32]
【定理】pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)をr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴pが奇素数のとき、x^p+y^p=z^pは自然数解を持たない。
631132人目の素数さん
2021/03/10(水) 08:13:24.47ID:h1qYjZvj 92 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 09:51:22.79 ID:YKio0ytF [3/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
93 名前:日高[] 投稿日:2021/03/05(金) 09:52:56.88 ID:YKio0ytF [4/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
94 名前:日高[] 投稿日:2021/03/05(金) 09:54:52.15 ID:YKio0ytF [5/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
93 名前:日高[] 投稿日:2021/03/05(金) 09:52:56.88 ID:YKio0ytF [4/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
94 名前:日高[] 投稿日:2021/03/05(金) 09:54:52.15 ID:YKio0ytF [5/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
632132人目の素数さん
2021/03/10(水) 08:15:55.78ID:ChF3fhkM633日高
2021/03/10(水) 08:30:19.54ID:d9ZHpgHj >632
なぜ
s^n+t^n=(s+1)^n を (4) に当てはめると、成立しないのでしょうか?
(4)を、
x=s、y=t、r=1とおくと、成立しません。
なぜ
s^n+t^n=(s+1)^n を (4) に当てはめると、成立しないのでしょうか?
(4)を、
x=s、y=t、r=1とおくと、成立しません。
634日高
2021/03/10(水) 08:34:57.10ID:d9ZHpgHj >629
読んでもらえましたか?
よみました。返事しました。
読んでもらえましたか?
よみました。返事しました。
635日高
2021/03/10(水) 08:37:04.72ID:d9ZHpgHj >615
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
(4)は、x,y,zが有理数のとき、成立しません。
よって、06行目、x^n+y^n=z^nは自然数解を持たないとは言えません。
(4)は、x,y,zが有理数のとき、成立しません。
636日高
2021/03/10(水) 08:37:49.27ID:d9ZHpgHj 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
637日高
2021/03/10(水) 08:38:30.67ID:d9ZHpgHj (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
638日高
2021/03/10(水) 08:39:24.39ID:d9ZHpgHj 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
639日高
2021/03/10(水) 08:40:02.91ID:d9ZHpgHj 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
640日高
2021/03/10(水) 08:43:43.76ID:d9ZHpgHj 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
641132人目の素数さん
2021/03/10(水) 08:48:39.95ID:ChF3fhkM >>633
> >632
> なぜ
> s^n+t^n=(s+1)^n を (4) に当てはめると、成立しないのでしょうか?
>
> (4)を、
> x=s、y=t、r=1とおくと、成立しません。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4) を、
x=s、y=t、r=1とおくと、
s^n+t^n=(s+1)^n
となりますが、なぜこの式が成立しない事が分かるのでしょうか?
> >632
> なぜ
> s^n+t^n=(s+1)^n を (4) に当てはめると、成立しないのでしょうか?
>
> (4)を、
> x=s、y=t、r=1とおくと、成立しません。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4) を、
x=s、y=t、r=1とおくと、
s^n+t^n=(s+1)^n
となりますが、なぜこの式が成立しない事が分かるのでしょうか?
642日高
2021/03/10(水) 08:58:14.09ID:d9ZHpgHj >641
s^n+t^n=(s+1)^n
となりますが、なぜこの式が成立しない事が分かるのでしょうか?
(3)が成立しないので、(4)も成立しません。
s^n+t^n=(s+1)^n
となりますが、なぜこの式が成立しない事が分かるのでしょうか?
(3)が成立しないので、(4)も成立しません。
643日高
2021/03/10(水) 09:07:53.06ID:d9ZHpgHj >641
s^n+t^n=(s+1)^n
となりますが、なぜこの式が成立しない事が分かるのでしょうか?
(3)が成立しないので、(4)も成立しません。
(4)は、x,y,zが有理数のとき、成立しません。
s^n+t^n=(s+1)^n
となりますが、なぜこの式が成立しない事が分かるのでしょうか?
(3)が成立しないので、(4)も成立しません。
(4)は、x,y,zが有理数のとき、成立しません。
644132人目の素数さん
2021/03/10(水) 09:17:16.97ID:ChF3fhkM645日高
2021/03/10(水) 09:24:54.82ID:d9ZHpgHj >644
> (4)は、x,y,zが有理数のとき、成立しません。
という事でよろしいのでしょうか?
はい。
> (4)は、x,y,zが有理数のとき、成立しません。
という事でよろしいのでしょうか?
はい。
646132人目の素数さん
2021/03/10(水) 09:26:52.89ID:h1qYjZvj 636 名前:日高[] 投稿日:2021/03/10(水) 08:37:49.27 ID:d9ZHpgHj [8/15]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
637 名前:日高[] 投稿日:2021/03/10(水) 08:38:30.67 ID:d9ZHpgHj [9/15]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
638 名前:日高[] 投稿日:2021/03/10(水) 08:39:24.39 ID:d9ZHpgHj [10/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
639 名前:日高[] 投稿日:2021/03/10(水) 08:40:02.91 ID:d9ZHpgHj [11/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
637 名前:日高[] 投稿日:2021/03/10(水) 08:38:30.67 ID:d9ZHpgHj [9/15]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
638 名前:日高[] 投稿日:2021/03/10(水) 08:39:24.39 ID:d9ZHpgHj [10/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
639 名前:日高[] 投稿日:2021/03/10(水) 08:40:02.91 ID:d9ZHpgHj [11/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
647132人目の素数さん
2021/03/10(水) 09:27:18.93ID:h1qYjZvj 640 名前:日高[] 投稿日:2021/03/10(水) 08:43:43.76 ID:d9ZHpgHj [12/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
648132人目の素数さん
2021/03/10(水) 09:28:32.08ID:ChF3fhkM649日高
2021/03/10(水) 09:30:16.41ID:d9ZHpgHj >553
(4) の x,y,z を有理数にするとき、
(3) の x,y は無理数ですよ。
(3) の x,y は整数比では、ありません。
(4) の x,y,z を有理数にするとき、
(3) の x,y は無理数ですよ。
(3) の x,y は整数比では、ありません。
650日高
2021/03/10(水) 09:35:34.33ID:d9ZHpgHj651日高
2021/03/10(水) 09:37:08.40ID:d9ZHpgHj 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
652日高
2021/03/10(水) 09:37:53.08ID:d9ZHpgHj (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
653日高
2021/03/10(水) 09:38:45.64ID:d9ZHpgHj 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
654日高
2021/03/10(水) 09:39:29.65ID:d9ZHpgHj 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
655132人目の素数さん
2021/03/10(水) 09:50:25.49ID:ChF3fhkM >>650
> >648
> その証明は >>637 という事でしょうか?
>
> 637と、636です。
わかりました。
637 のラスト3行から (C) が登場します。
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
> (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
> (4)はx,y,zが有理数の場合は、成立しない。
最終行でいきなり(理由無しに)「...成立しない。」が言われるので、
これでは、私も他の人も納得できません。
637 を補足して、
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
> (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(...これこれ、こういう理由で↓)
> (4)はx,y,zが有理数の場合は、成立しない。
(よってその形に該当する (C) も成立しない。)
上記の
(...これこれ、こういう理由で↓)
の部分を教えてください。
(長々と書きましたが、要は、
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください、という事です)
> >648
> その証明は >>637 という事でしょうか?
>
> 637と、636です。
わかりました。
637 のラスト3行から (C) が登場します。
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
> (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
> (4)はx,y,zが有理数の場合は、成立しない。
最終行でいきなり(理由無しに)「...成立しない。」が言われるので、
これでは、私も他の人も納得できません。
637 を補足して、
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
> (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(...これこれ、こういう理由で↓)
> (4)はx,y,zが有理数の場合は、成立しない。
(よってその形に該当する (C) も成立しない。)
上記の
(...これこれ、こういう理由で↓)
の部分を教えてください。
(長々と書きましたが、要は、
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください、という事です)
656日高
2021/03/10(水) 10:41:26.66ID:d9ZHpgHj >655
(長々と書きましたが、要は、
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください、という事です)
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の(an)^{1/(n-1)}は、有理数となり得ます。
(4)は、x,y,zが、有理数のとき、成立しません。
(長々と書きましたが、要は、
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください、という事です)
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の(an)^{1/(n-1)}は、有理数となり得ます。
(4)は、x,y,zが、有理数のとき、成立しません。
657132人目の素数さん
2021/03/10(水) 10:53:03.04ID:ChF3fhkM >>656
> >655
> (長々と書きましたが、要は、
> 「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください、という事です)
>
> (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の(an)^{1/(n-1)}は、有理数となり得ます。
> (4)は、x,y,zが、有理数のとき、成立しません。
それは、
(3) の x:y:z = 無理数:有理数:無理数 を a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:無理数:有理数
になるって事でしょう?
しかし、
(3)の x,y,z を、全て整数比の無理数とおくと、
(3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:有理数:有理数
にもなります。
よって、「(4)はx,y,zが有理数の場合は、成立しない。」理由にはなっていません。
> >655
> (長々と書きましたが、要は、
> 「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください、という事です)
>
> (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の(an)^{1/(n-1)}は、有理数となり得ます。
> (4)は、x,y,zが、有理数のとき、成立しません。
それは、
(3) の x:y:z = 無理数:有理数:無理数 を a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:無理数:有理数
になるって事でしょう?
しかし、
(3)の x,y,z を、全て整数比の無理数とおくと、
(3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:有理数:有理数
にもなります。
よって、「(4)はx,y,zが有理数の場合は、成立しない。」理由にはなっていません。
658132人目の素数さん
2021/03/10(水) 11:25:25.07ID:zXmoiUwQ >>656
>x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の(an)^{1/(n-1)}は、有理数となり得ます。
のであれば,その解の比をもつ解は(3)では無理数解となります。「x,y,zともに無理数」にしかなりえません。
(3)ではyが無理数の場合は何も論じられていません。
だから(4)は、x,y,zが有理数のとき成立するかどうか不明です。
成立しないというならば,yが無理数の場合の証明が必要です。
あなたが,おまけだといっている(3)のx,yが無理数の場合をちゃんと証明すること,その証明こそがフェルマーの最終定理の証明です。
(4)はx,y,zが有理数の場合は、成立しない。
これを,あなたが「これが証明になる」「これが証明だ」と思い込んでいる(3)で「yが有理数の場合がどうしたこうした」という方法以外の方法で証明しなければなりません
(3)でyが有理数の場合は,フェルマーの最終定理とは無関係です。
という,証明の対象として何を選ばなければならないか,をまったく理解できていないから,あなたのやっていることは数学ではないと言われるんですよ。
私は>655ではありませんので,>655の質問にはお答えをお願いします。ここでは,
>(4)は、x,y,zが、有理数のとき、成立しません。
が成り立つ実質的な,つまり,「(3)でyが有理数のとき・・・」ではない数学的な根拠を求められています。
繰り返しますが,「(3)でyが有理数のとき・・・」が根拠になると思うなら,ここでのあなたの【証明】は数学じゃないですよ。
>x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の(an)^{1/(n-1)}は、有理数となり得ます。
のであれば,その解の比をもつ解は(3)では無理数解となります。「x,y,zともに無理数」にしかなりえません。
(3)ではyが無理数の場合は何も論じられていません。
だから(4)は、x,y,zが有理数のとき成立するかどうか不明です。
成立しないというならば,yが無理数の場合の証明が必要です。
あなたが,おまけだといっている(3)のx,yが無理数の場合をちゃんと証明すること,その証明こそがフェルマーの最終定理の証明です。
(4)はx,y,zが有理数の場合は、成立しない。
これを,あなたが「これが証明になる」「これが証明だ」と思い込んでいる(3)で「yが有理数の場合がどうしたこうした」という方法以外の方法で証明しなければなりません
(3)でyが有理数の場合は,フェルマーの最終定理とは無関係です。
という,証明の対象として何を選ばなければならないか,をまったく理解できていないから,あなたのやっていることは数学ではないと言われるんですよ。
私は>655ではありませんので,>655の質問にはお答えをお願いします。ここでは,
>(4)は、x,y,zが、有理数のとき、成立しません。
が成り立つ実質的な,つまり,「(3)でyが有理数のとき・・・」ではない数学的な根拠を求められています。
繰り返しますが,「(3)でyが有理数のとき・・・」が根拠になると思うなら,ここでのあなたの【証明】は数学じゃないですよ。
659日高
2021/03/10(水) 12:11:35.60ID:d9ZHpgHj >657
しかし、
(3)の x,y,z を、全て整数比の無理数とおくと、
(3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:有理数:有理数
にもなります。
その通りです。
しかし、(3) の x:y:z = 無理数:無理数:無理数は、
x:y:z = 有理数:有理数:有理数と、同じとなります。
しかし、
(3)の x,y,z を、全て整数比の無理数とおくと、
(3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:有理数:有理数
にもなります。
その通りです。
しかし、(3) の x:y:z = 無理数:無理数:無理数は、
x:y:z = 有理数:有理数:有理数と、同じとなります。
660日高
2021/03/10(水) 12:17:35.87ID:d9ZHpgHj >658
繰り返しますが,「(3)でyが有理数のとき・・・」が根拠になると思うなら,ここでのあなたの【証明】は数学じゃないですよ。
なぜ、「(3)でyが有理数のとき・・・」が根拠にならないのでしょうか?
繰り返しますが,「(3)でyが有理数のとき・・・」が根拠になると思うなら,ここでのあなたの【証明】は数学じゃないですよ。
なぜ、「(3)でyが有理数のとき・・・」が根拠にならないのでしょうか?
661132人目の素数さん
2021/03/10(水) 12:53:57.52ID:zXmoiUwQ >>660
「(3)でyが有理数のときxは無理数となる」これは正しい命題ですが,
その真偽にかかわらず,(3)にx,y,zが整数比(有理数比)の無理数解があれば,(4)には有理数解が生じるからです。
逆に(4)に有理数解があれば,(3)には整数比となる無理数解が存在します。ただし,(3)に有理数解が生じるわけではありません。
つまり,(4)が有理数解を持つためには,(3)には整数比となる無理数解があればよく,(3)に有理数解が必要になるわけではありません。
有理数比の解と,有理数解の比は異なります。
(3)に有理数比の無理数解があるかどうか,そしてそのことによってのみ,(4)に有理数解があるかどうかが決します。
フェルマーの最終定理を(3)から証明するのであれば,(3)に有理数比の無理数解が存在しないことが証明すべきことです。
即ち,(3)の有理数解の不存在は,(4)の有理数解の不存在証明に無関係です。
無関係な事実から,フェルマーの最終定理を導くことはできません。
>しかし、(3) の x:y:z = 無理数:無理数:無理数は、
>x:y:z = 有理数:有理数:有理数と、同じとなります。
上は>657への応答であって,こちらへの返答ではないでしょうが,これについても答えておきます。
だからこそ,(3)の無理数解(yも無理数)が有理数比(整数比)にならないことを,(3)について「yが有理数のとき・・・」云々すること以外で証明することが必要になります。
「(3)でyが有理数のときxは無理数となる」これは正しい命題ですが,
その真偽にかかわらず,(3)にx,y,zが整数比(有理数比)の無理数解があれば,(4)には有理数解が生じるからです。
逆に(4)に有理数解があれば,(3)には整数比となる無理数解が存在します。ただし,(3)に有理数解が生じるわけではありません。
つまり,(4)が有理数解を持つためには,(3)には整数比となる無理数解があればよく,(3)に有理数解が必要になるわけではありません。
有理数比の解と,有理数解の比は異なります。
(3)に有理数比の無理数解があるかどうか,そしてそのことによってのみ,(4)に有理数解があるかどうかが決します。
フェルマーの最終定理を(3)から証明するのであれば,(3)に有理数比の無理数解が存在しないことが証明すべきことです。
即ち,(3)の有理数解の不存在は,(4)の有理数解の不存在証明に無関係です。
無関係な事実から,フェルマーの最終定理を導くことはできません。
>しかし、(3) の x:y:z = 無理数:無理数:無理数は、
>x:y:z = 有理数:有理数:有理数と、同じとなります。
上は>657への応答であって,こちらへの返答ではないでしょうが,これについても答えておきます。
だからこそ,(3)の無理数解(yも無理数)が有理数比(整数比)にならないことを,(3)について「yが有理数のとき・・・」云々すること以外で証明することが必要になります。
662132人目の素数さん
2021/03/10(水) 13:39:54.01ID:h1qYjZvj 651 名前:日高[] 投稿日:2021/03/10(水) 09:37:08.40 ID:d9ZHpgHj [18/24]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
652 名前:日高[] 投稿日:2021/03/10(水) 09:37:53.08 ID:d9ZHpgHj [19/24]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
653 名前:日高[] 投稿日:2021/03/10(水) 09:38:45.64 ID:d9ZHpgHj [20/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
654 名前:日高[] 投稿日:2021/03/10(水) 09:39:29.65 ID:d9ZHpgHj [21/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
652 名前:日高[] 投稿日:2021/03/10(水) 09:37:53.08 ID:d9ZHpgHj [19/24]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
653 名前:日高[] 投稿日:2021/03/10(水) 09:38:45.64 ID:d9ZHpgHj [20/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
654 名前:日高[] 投稿日:2021/03/10(水) 09:39:29.65 ID:d9ZHpgHj [21/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
663日高
2021/03/10(水) 14:22:46.37ID:d9ZHpgHj 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,yは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。(4)のx,zが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,yは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。(4)のx,zが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
664132人目の素数さん
2021/03/10(水) 15:01:31.04ID:h1qYjZvj 663 名前:日高[] 投稿日:2021/03/10(水) 14:22:46.37 ID:d9ZHpgHj [25/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,yは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。(4)のx,zが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,yは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。(4)のx,zが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2021/03/10(水) 15:07:55.22ID:h1qYjZvj
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/10(水) 15:08:28.84ID:h1qYjZvj
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
667無駄の拡大再生産
2021/03/10(水) 15:10:33.99ID:h1qYjZvj 194 名前:日高[] 投稿日:2021/02/20(土) 20:37:44.81 ID:+4Olc+ni [53/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
195 名前:日高[] 投稿日:2021/02/20(土) 20:38:30.82 ID:+4Olc+ni [54/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
196 名前:日高[] 投稿日:2021/02/20(土) 20:39:14.80 ID:+4Olc+ni [55/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
195 名前:日高[] 投稿日:2021/02/20(土) 20:38:30.82 ID:+4Olc+ni [54/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
196 名前:日高[] 投稿日:2021/02/20(土) 20:39:14.80 ID:+4Olc+ni [55/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
668無駄の拡大再生産
2021/03/10(水) 15:11:01.49ID:h1qYjZvj 197 名前:日高[] 投稿日:2021/02/20(土) 20:40:12.08 ID:+4Olc+ni [56/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
名前:日高[] 投稿日:2021/02/20(土) 20:41:05.46 ID:+4Olc+ni [57/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
200 名前:日高[] 投稿日:2021/02/20(土) 20:43:00.94 ID:+4Olc+ni [58/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
201 名前:日高[] 投稿日:2021/02/20(土) 20:45:30.83 ID:+4Olc+ni [59/59]
>198
ここまでは、わかりますか?
はい。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
名前:日高[] 投稿日:2021/02/20(土) 20:41:05.46 ID:+4Olc+ni [57/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
200 名前:日高[] 投稿日:2021/02/20(土) 20:43:00.94 ID:+4Olc+ni [58/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
201 名前:日高[] 投稿日:2021/02/20(土) 20:45:30.83 ID:+4Olc+ni [59/59]
>198
ここまでは、わかりますか?
はい。
669無駄の拡大再生産
2021/03/10(水) 15:11:33.15ID:h1qYjZvj 210 名前:日高[] 投稿日:2021/02/21(日) 07:01:13.30 ID:zINpMgMG [3/8]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
211 名前:日高[] 投稿日:2021/02/21(日) 07:02:35.21 ID:zINpMgMG [4/8]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
212 名前:日高[] 投稿日:2021/02/21(日) 07:03:50.70 ID:zINpMgMG [5/8]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
211 名前:日高[] 投稿日:2021/02/21(日) 07:02:35.21 ID:zINpMgMG [4/8]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
212 名前:日高[] 投稿日:2021/02/21(日) 07:03:50.70 ID:zINpMgMG [5/8]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
670無駄の拡大再生産
2021/03/10(水) 15:12:14.91ID:h1qYjZvj 213 名前:日高[] 投稿日:2021/02/21(日) 07:05:07.70 ID:zINpMgMG [6/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
214 名前:日高[] 投稿日:2021/02/21(日) 07:06:48.76 ID:zINpMgMG [7/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
215 名前:日高[] 投稿日:2021/02/21(日) 07:08:13.90 ID:zINpMgMG [8/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
214 名前:日高[] 投稿日:2021/02/21(日) 07:06:48.76 ID:zINpMgMG [7/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
215 名前:日高[] 投稿日:2021/02/21(日) 07:08:13.90 ID:zINpMgMG [8/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
671無駄の拡大再生産
2021/03/10(水) 15:12:59.25ID:h1qYjZvj 223 名前:日高[] 投稿日:2021/02/21(日) 07:58:12.53 ID:zINpMgMG [10/15]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
224 名前:日高[] 投稿日:2021/02/21(日) 07:59:34.13 ID:zINpMgMG [11/15]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
225 名前:日高[] 投稿日:2021/02/21(日) 08:01:25.29 ID:zINpMgMG [12/15]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
224 名前:日高[] 投稿日:2021/02/21(日) 07:59:34.13 ID:zINpMgMG [11/15]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
225 名前:日高[] 投稿日:2021/02/21(日) 08:01:25.29 ID:zINpMgMG [12/15]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
672無駄の拡大再生産
2021/03/10(水) 15:13:26.05ID:h1qYjZvj 226 名前:日高[] 投稿日:2021/02/21(日) 08:02:46.49 ID:zINpMgMG [13/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
227 名前:日高[] 投稿日:2021/02/21(日) 08:03:46.63 ID:zINpMgMG [14/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
228 名前:日高[] 投稿日:2021/02/21(日) 08:05:07.88 ID:zINpMgMG [15/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
227 名前:日高[] 投稿日:2021/02/21(日) 08:03:46.63 ID:zINpMgMG [14/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
228 名前:日高[] 投稿日:2021/02/21(日) 08:05:07.88 ID:zINpMgMG [15/15]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
673日高
2021/03/10(水) 15:28:55.59ID:d9ZHpgHj 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)を検討する。(3)はrが無理数なので、x,yは、ともに有理数とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。(4)のx,zが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)を検討する。(3)はrが無理数なので、x,yは、ともに有理数とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。(4)のx,zが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
674日高
2021/03/10(水) 15:34:56.81ID:d9ZHpgHj (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
675日高
2021/03/10(水) 15:44:08.16ID:d9ZHpgHj 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)を検討する。(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(4)の解は、(3)の解のa倍となる
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)を検討する。(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(4)の解は、(3)の解のa倍となる
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
676日高
2021/03/10(水) 15:45:45.02ID:d9ZHpgHj 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
677日高
2021/03/10(水) 15:55:42.21ID:d9ZHpgHj >661
だからこそ,(3)の無理数解(yも無理数)が有理数比(整数比)にならないことを,(3)について「yが有理数のとき・・・」云々すること以外で証明することが必要になります。
a(1/a)=1なので、(3)を検討する。(3)はrが無理数なので、x,yは共に有理数とならない。に、訂正します。
だからこそ,(3)の無理数解(yも無理数)が有理数比(整数比)にならないことを,(3)について「yが有理数のとき・・・」云々すること以外で証明することが必要になります。
a(1/a)=1なので、(3)を検討する。(3)はrが無理数なので、x,yは共に有理数とならない。に、訂正します。
678無駄の拡大再生産
2021/03/10(水) 16:48:57.56ID:h1qYjZvj 673 名前:日高[] 投稿日:2021/03/10(水) 15:28:55.59 ID:d9ZHpgHj [26/30]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)を検討する。(3)はrが無理数なので、x,yは、ともに有理数とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。(4)のx,zが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
674 名前:日高[] 投稿日:2021/03/10(水) 15:34:56.81 ID:d9ZHpgHj [27/30]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
675 名前:日高[] 投稿日:2021/03/10(水) 15:44:08.16 ID:d9ZHpgHj [28/30]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)を検討する。(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(4)の解は、(3)の解のa倍となる
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
676 名前:日高[] 投稿日:2021/03/10(水) 15:45:45.02 ID:d9ZHpgHj [29/30]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)を検討する。(3)はrが無理数なので、x,yは、ともに有理数とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。(4)のx,zが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
674 名前:日高[] 投稿日:2021/03/10(水) 15:34:56.81 ID:d9ZHpgHj [27/30]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
675 名前:日高[] 投稿日:2021/03/10(水) 15:44:08.16 ID:d9ZHpgHj [28/30]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
a(1/a)=1なので、(3)を検討する。(3)はrが有理数なので、yが有理数のとき、xは有理数となる。
(4)の解は、(3)の解のa倍となる
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
676 名前:日高[] 投稿日:2021/03/10(水) 15:45:45.02 ID:d9ZHpgHj [29/30]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
679日高
2021/03/10(水) 18:05:25.45ID:d9ZHpgHj 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、x,yは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(3)の解も、整数比とならない。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、(3)のx,yが整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、x,yは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(3)の解も、整数比とならない。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、(3)のx,yが整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
680日高
2021/03/10(水) 18:09:38.26ID:d9ZHpgHj 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
681日高
2021/03/10(水) 18:12:08.31ID:d9ZHpgHj >661
だからこそ,(3)の無理数解(yも無理数)が有理数比(整数比)にならないことを,(3)について「yが有理数のとき・・・」云々すること以外で証明することが必要になります。
679に、訂正します。
だからこそ,(3)の無理数解(yも無理数)が有理数比(整数比)にならないことを,(3)について「yが有理数のとき・・・」云々すること以外で証明することが必要になります。
679に、訂正します。
682132人目の素数さん
2021/03/10(水) 19:01:45.89ID:ChF3fhkM >>659
> >657
> しかし、
> (3)の x,y,z を、全て整数比の無理数とおくと、
> (3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
> (4) の x:y:z = 有理数:有理数:有理数
> にもなります。
>
> その通りです。
>
> しかし、(3) の x:y:z = 無理数:無理数:無理数は、
> x:y:z = 有理数:有理数:有理数と、同じとなります。
??? よく分かりません。
「(3) に整数比の無理数があれば、 (3) に有理数解がある」
と言っているのでしょうか?
> >657
> しかし、
> (3)の x,y,z を、全て整数比の無理数とおくと、
> (3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
> (4) の x:y:z = 有理数:有理数:有理数
> にもなります。
>
> その通りです。
>
> しかし、(3) の x:y:z = 無理数:無理数:無理数は、
> x:y:z = 有理数:有理数:有理数と、同じとなります。
??? よく分かりません。
「(3) に整数比の無理数があれば、 (3) に有理数解がある」
と言っているのでしょうか?
683132人目の素数さん
2021/03/10(水) 19:02:36.77ID:ChF3fhkM 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
です。
です。
684日高
2021/03/10(水) 19:48:26.05ID:d9ZHpgHj >661
だからこそ,(3)の無理数解(yも無理数)が有理数比(整数比)にならないことを,(3)について「yが有理数のとき・・・」云々すること以外で証明することが必要になります。
取り消します。
だからこそ,(3)の無理数解(yも無理数)が有理数比(整数比)にならないことを,(3)について「yが有理数のとき・・・」云々すること以外で証明することが必要になります。
取り消します。
685日高
2021/03/10(水) 19:53:46.76ID:d9ZHpgHj >681
取り消します。
取り消します。
686全部取り消します。
2021/03/10(水) 20:09:10.54ID:h1qYjZvj 679 名前:日高[] 投稿日:2021/03/10(水) 18:05:25.45 ID:d9ZHpgHj [31/35]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、x,yは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(3)の解も、整数比とならない。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、(3)のx,yが整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
680 名前:日高[] 投稿日:2021/03/10(水) 18:09:38.26 ID:d9ZHpgHj [32/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、x,yは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(3)の解も、整数比とならない。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、(3)のx,yが整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
680 名前:日高[] 投稿日:2021/03/10(水) 18:09:38.26 ID:d9ZHpgHj [32/35]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
687取り消します。
2021/03/10(水) 20:09:56.31ID:h1qYjZvj 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
688取り消します。
2021/03/10(水) 20:10:22.95ID:h1qYjZvj 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
689132人目の素数さん
2021/03/10(水) 20:22:56.00ID:zXmoiUwQ >>679
>(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、x,yは整数比とならない。
(an)^{1/(n-1)}=w(wは無理数)とおきます。そのとき x^n+y^n=(x+w)^n...(4)'
x:y=1:1となる解が存在するか調べるために,y=x (x>0,y>0)とおくと,(4)'は
2*x^n=(x+w)^n
⇔{2^(1/n)}x=x+w
⇔{2^(1/n)-1}x=w
⇔x=w/{2^(1/n)-1}=y
x=y=w/{2^(1/n)-1}とおくと,(4)のx,yは整数比(1:1)になりますけど?
r(即ちz)を含めなければ,1:1に限らず,x:yは任意の整数比を取りえます。
x:yだけなら整数比になり得ます,確認するためにy=xを代入してみましょうと何度も何度も指摘してきましたが,いくら指摘されても,そのうちにx,yは整数比にならない,という表現に戻ってしまいますね。
脳内マスクROMからの書き出しみたいですから,書き換えは無理なんでしょうけど。
>(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、x,yは整数比とならない。
(an)^{1/(n-1)}=w(wは無理数)とおきます。そのとき x^n+y^n=(x+w)^n...(4)'
x:y=1:1となる解が存在するか調べるために,y=x (x>0,y>0)とおくと,(4)'は
2*x^n=(x+w)^n
⇔{2^(1/n)}x=x+w
⇔{2^(1/n)-1}x=w
⇔x=w/{2^(1/n)-1}=y
x=y=w/{2^(1/n)-1}とおくと,(4)のx,yは整数比(1:1)になりますけど?
r(即ちz)を含めなければ,1:1に限らず,x:yは任意の整数比を取りえます。
x:yだけなら整数比になり得ます,確認するためにy=xを代入してみましょうと何度も何度も指摘してきましたが,いくら指摘されても,そのうちにx,yは整数比にならない,という表現に戻ってしまいますね。
脳内マスクROMからの書き出しみたいですから,書き換えは無理なんでしょうけど。
690日高
2021/03/10(水) 20:37:43.95ID:d9ZHpgHj >682
「(3) に整数比の無理数があれば、 (3) に有理数解がある」
と言っているのでしょうか?
はい。
「(3) に整数比の無理数があれば、 (3) に有理数解がある」
と言っているのでしょうか?
はい。
691132人目の素数さん
2021/03/10(水) 20:55:25.44ID:bxsQtPkM >>690
> >682
> 「(3) に整数比の無理数があれば、 (3) に有理数解がある」
> と言っているのでしょうか?
>
> はい。
まさか
その整数比の無理数解を共通の無理数で割れば(3)の有理数解になる
とは主張しませんよね?
> >682
> 「(3) に整数比の無理数があれば、 (3) に有理数解がある」
> と言っているのでしょうか?
>
> はい。
まさか
その整数比の無理数解を共通の無理数で割れば(3)の有理数解になる
とは主張しませんよね?
692132人目の素数さん
2021/03/11(木) 00:22:09.74ID:VXQmKzLw >>635
n=2のとき
x^2+y^2=(x+√3)^2…(5)
x^2+y^2=(x+2a)^2…(4)
x,yが有理数の(5)の解は存在しません。
x,yが有理数比の(5)の解は存在します。例、x=12√3、y=5√3
当然このとき同じ比のx,yが有理数の(4)の解が存在します。x=12,y=5
x,yが有理数の(5)の解が存在しないことと、x,yが有理数比の(5)の解が存在することは、関係ありません。
x,yが有理数の(5)の解が存在しないことと、x,yが有理数の(4)の解が存在することは、関係ありません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
n=3のとき
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+(3a)^(1/2))^3…(4)
x,yが有理数の(3)の解は存在しません。
x,yが有理数比の(3)の解は存在します。x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2x
当然このとき同じ比のx,yが有理数の(4)の解が存在します。x=1,y=2
x,yが有理数の(3)の解が存在しないことと、x,yが有理数比の(3)の解が存在することは、関係ありません。
x,yが有理数の(3)の解が存在しないことと、x,yが有理数の(4)の解が存在することは、関係ありません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
n=2のとき
x^2+y^2=(x+√3)^2…(5)
x^2+y^2=(x+2a)^2…(4)
x,yが有理数の(5)の解は存在しません。
x,yが有理数比の(5)の解は存在します。例、x=12√3、y=5√3
当然このとき同じ比のx,yが有理数の(4)の解が存在します。x=12,y=5
x,yが有理数の(5)の解が存在しないことと、x,yが有理数比の(5)の解が存在することは、関係ありません。
x,yが有理数の(5)の解が存在しないことと、x,yが有理数の(4)の解が存在することは、関係ありません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
n=3のとき
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+(3a)^(1/2))^3…(4)
x,yが有理数の(3)の解は存在しません。
x,yが有理数比の(3)の解は存在します。x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2x
当然このとき同じ比のx,yが有理数の(4)の解が存在します。x=1,y=2
x,yが有理数の(3)の解が存在しないことと、x,yが有理数比の(3)の解が存在することは、関係ありません。
x,yが有理数の(3)の解が存在しないことと、x,yが有理数の(4)の解が存在することは、関係ありません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
693132人目の素数さん
2021/03/11(木) 00:22:32.13ID:VXQmKzLw >>635
n=2のとき
x^2+y^2=(x+√3)^2…(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
すべての(5)の解を調べなければ、(5)の解を調べたことになりません。
yが有理数の(5)の解だけを調べても、すべての(5)の解を調べたことになりません。
(5)の解の比と(4)の解の比は同じなので、
すべての(5)の解を調べていないなら、すべての(4)の解を調べたことになりません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
n=3のとき
x^3+y^3=(x+√3)^3…(3)
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
すべての(3)の解を調べなければ、(3)の解を調べたことになりません。
yが有理数の(3)の解だけを調べても、すべての(3)の解を調べたことになりません。
(3)の解の比と(4)の解の比は同じなので、
すべての(3)の解を調べていないなら、すべての(4)の解を調べたことになりません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
n=2のとき
x^2+y^2=(x+√3)^2…(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
すべての(5)の解を調べなければ、(5)の解を調べたことになりません。
yが有理数の(5)の解だけを調べても、すべての(5)の解を調べたことになりません。
(5)の解の比と(4)の解の比は同じなので、
すべての(5)の解を調べていないなら、すべての(4)の解を調べたことになりません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
n=3のとき
x^3+y^3=(x+√3)^3…(3)
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
すべての(3)の解を調べなければ、(3)の解を調べたことになりません。
yが有理数の(3)の解だけを調べても、すべての(3)の解を調べたことになりません。
(3)の解の比と(4)の解の比は同じなので、
すべての(3)の解を調べていないなら、すべての(4)の解を調べたことになりません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
694132人目の素数さん
2021/03/11(木) 00:23:07.07ID:VXQmKzLw >>635
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(3)の解に有理数のものがないことは、(3)の解に有理数比のものがない証拠になりません。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
(4)の解は(3)の解と同じ比のものがあるので、
(3)にx、y、zが有理数比のものがあれば、(4)にx、y、zが有理数比のものがあります。
(3)にx、y、zが有理数比のものがなければ、(4)にx、y、zが有理数比のものがありません。
(3)にx、y、zが有理数比のものがあるとも、ないとも、いえないので、
(4)にx、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)
(3)の解に有理数のものがないことは、(3)の解に有理数比のものがない証拠になりません。
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についてまとめていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
(4)の解は(3)の解と同じ比のものがあるので、
(3)にx、y、zが有理数比のものがあれば、(4)にx、y、zが有理数比のものがあります。
(3)にx、y、zが有理数比のものがなければ、(4)にx、y、zが有理数比のものがありません。
(3)にx、y、zが有理数比のものがあるとも、ないとも、いえないので、
(4)にx、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
695132人目の素数さん
2021/03/11(木) 06:42:21.31ID:mAwPyFKC >>690
> >682
> 「(3) に整数比の無理数があれば、 (3) に有理数解がある」
> と言っているのでしょうか?
>
> はい。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
なぜ「s^n+t^n=u^n…(C) は成立しない。」が言えるのでしょうか。
> >682
> 「(3) に整数比の無理数があれば、 (3) に有理数解がある」
> と言っているのでしょうか?
>
> はい。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
なぜ「s^n+t^n=u^n…(C) は成立しない。」が言えるのでしょうか。
696日高
2021/03/11(木) 07:13:26.73ID:yQRyqmew 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
697日高
2021/03/11(木) 07:18:29.77ID:yQRyqmew (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
698日高
2021/03/11(木) 07:28:27.41ID:yQRyqmew >689
x:yは任意の整数比を取りえます。
しかし、その場合、式は成立しません。
x:yは任意の整数比を取りえます。
しかし、その場合、式は成立しません。
699日高
2021/03/11(木) 07:31:05.31ID:yQRyqmew >691
まさか
その整数比の無理数解を共通の無理数で割れば(3)の有理数解になる
とは主張しませんよね?
そうなります。
まさか
その整数比の無理数解を共通の無理数で割れば(3)の有理数解になる
とは主張しませんよね?
そうなります。
700そうなります。
2021/03/11(木) 07:41:28.56ID:1jnNdeV1 696 名前:日高[] 投稿日:2021/03/11(木) 07:13:26.73 ID:yQRyqmew [1/4]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
697 名前:日高[] 投稿日:2021/03/11(木) 07:18:29.77 ID:yQRyqmew [2/4]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
699 名前:日高[] 投稿日:2021/03/11(木) 07:31:05.31 ID:yQRyqmew [4/4]
>691
まさか
その整数比の無理数解を共通の無理数で割れば(3)の有理数解になる
とは主張しませんよね?
そうなります。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
697 名前:日高[] 投稿日:2021/03/11(木) 07:18:29.77 ID:yQRyqmew [2/4]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しない。
699 名前:日高[] 投稿日:2021/03/11(木) 07:31:05.31 ID:yQRyqmew [4/4]
>691
まさか
その整数比の無理数解を共通の無理数で割れば(3)の有理数解になる
とは主張しませんよね?
そうなります。
2021/03/11(木) 07:42:12.84ID:1jnNdeV1
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
702恣意的にr=2とします
2021/03/11(木) 07:42:48.45ID:1jnNdeV1 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/11(木) 07:43:57.43ID:1jnNdeV1
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
704132人目の素数さん
2021/03/11(木) 08:45:50.89ID:FPSKm93d 日高はどうしようもなく記憶力がなくて愚かだからな
> x^n+y^n=(x+r)^n…(1)
ならx,y,r(またはz=x+r)を定数倍しても成り立つことから
> x^n+y^n=(x+n^{1/(n-1)})^n…(3)
はx,yを定数倍しても成り立つと思い込んでいるんだ
> x^n+y^n=(x+r)^n…(1)
ならx,y,r(またはz=x+r)を定数倍しても成り立つことから
> x^n+y^n=(x+n^{1/(n-1)})^n…(3)
はx,yを定数倍しても成り立つと思い込んでいるんだ
705日高
2021/03/11(木) 09:16:16.39ID:yQRyqmew >692
x,yが有理数比の(3)の解は存在します。x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2x
このとき、(3)式は、成立するでしょうか?
x,yが有理数比の(3)の解は存在します。x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2x
このとき、(3)式は、成立するでしょうか?
706日高
2021/03/11(木) 09:22:13.33ID:yQRyqmew >694
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
697で、x,yが無理数の場合を調べています。
>(4)は、x,y,zが有理数のとき、成立しません。
とはいえません。
697で、x,yが無理数の場合を調べています。
707日高
2021/03/11(木) 09:27:29.73ID:yQRyqmew >695
なぜ「s^n+t^n=u^n…(C) は成立しない。」が言えるのでしょうか。
(4)のx,y,zを有理数とすると、成立しないからです。
なぜ「s^n+t^n=u^n…(C) は成立しない。」が言えるのでしょうか。
(4)のx,y,zを有理数とすると、成立しないからです。
708日高
2021/03/11(木) 09:32:52.07ID:yQRyqmew >704
> x^n+y^n=(x+n^{1/(n-1)})^n…(3)
はx,yを定数倍しても成り立つと思い込んでいるんだ
x,y,rを定数倍しないと、成り立ちません。
> x^n+y^n=(x+n^{1/(n-1)})^n…(3)
はx,yを定数倍しても成り立つと思い込んでいるんだ
x,y,rを定数倍しないと、成り立ちません。
709132人目の素数さん
2021/03/11(木) 09:34:46.78ID:mAwPyFKC >>707
> >695
> なぜ「s^n+t^n=u^n…(C) は成立しない。」が言えるのでしょうか。
>
> (4)のx,y,zを有理数とすると、成立しないからです。
すみません。全く分かりません。
以下の形式で書いてもらって良いですか?
-----
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
(...これこれ、こういう理由で↓)
よって、「s^n+t^n=u^n…(C) は成立しない。」が言える。
-----
> >695
> なぜ「s^n+t^n=u^n…(C) は成立しない。」が言えるのでしょうか。
>
> (4)のx,y,zを有理数とすると、成立しないからです。
すみません。全く分かりません。
以下の形式で書いてもらって良いですか?
-----
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
(...これこれ、こういう理由で↓)
よって、「s^n+t^n=u^n…(C) は成立しない。」が言える。
-----
710日高
2021/03/11(木) 09:35:29.63ID:yQRyqmew 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
711日高
2021/03/11(木) 09:40:41.25ID:yQRyqmew (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
712日高
2021/03/11(木) 10:08:20.25ID:yQRyqmew >709
以下の形式で書いてもらって良いですか?
s^n+t^n=u^n…(C) は成立しない。」は、
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
とは、関係ありません。
711を見て下さい。
以下の形式で書いてもらって良いですか?
s^n+t^n=u^n…(C) は成立しない。」は、
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
とは、関係ありません。
711を見て下さい。
713132人目の素数さん
2021/03/11(木) 10:25:14.35ID:FPSKm93d > >704
> > x^n+y^n=(x+n^{1/(n-1)})^n…(3)
> はx,yを定数倍しても成り立つと思い込んでいるんだ
>
> x,y,rを定数倍しないと、成り立ちません。
そうか
> >691
> まさか
> その整数比の無理数解を共通の無理数で割れば(3)の有理数解になる
> とは主張しませんよね?
>
> そうなります。
というのは
r=n^{1/(n-1)}を共通の無理数で割れば r=n^{1/(n-1)}になる
と主張しているのか
> > x^n+y^n=(x+n^{1/(n-1)})^n…(3)
> はx,yを定数倍しても成り立つと思い込んでいるんだ
>
> x,y,rを定数倍しないと、成り立ちません。
そうか
> >691
> まさか
> その整数比の無理数解を共通の無理数で割れば(3)の有理数解になる
> とは主張しませんよね?
>
> そうなります。
というのは
r=n^{1/(n-1)}を共通の無理数で割れば r=n^{1/(n-1)}になる
と主張しているのか
714132人目の素数さん
2021/03/11(木) 10:25:54.09ID:mAwPyFKC >>712
新しい証明711 でも本質は変わっていないと思うので、議論を続けます。
> s^n+t^n=u^n…(C) は成立しない。」は、
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
> とは、関係ありません。
との事なので、レス >>657 に戻ります。
-----
657 名前:132人目の素数さん[sage] 投稿日:2021/03/10(水) 10:53:03.04 ID:ChF3fhkM [7/9]
> ...
> (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の(an)^{1/(n-1)}は、有理数となり得ます。
> (4)は、x,y,zが、有理数のとき、成立しません。
それは、
(3) の x:y:z = 無理数:有理数:無理数 を a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:無理数:有理数
になるって事でしょう?
しかし、
(3)の x,y,z を、全て整数比の無理数とおくと、
(3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:有理数:有理数
にもなります。
よって、「(4)はx,y,zが有理数の場合は、成立しない。」理由にはなっていません。
-----
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください
に対して、私が反論したところです。
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください。
新しい証明711 でも本質は変わっていないと思うので、議論を続けます。
> s^n+t^n=u^n…(C) は成立しない。」は、
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
> とは、関係ありません。
との事なので、レス >>657 に戻ります。
-----
657 名前:132人目の素数さん[sage] 投稿日:2021/03/10(水) 10:53:03.04 ID:ChF3fhkM [7/9]
> ...
> (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)の(an)^{1/(n-1)}は、有理数となり得ます。
> (4)は、x,y,zが、有理数のとき、成立しません。
それは、
(3) の x:y:z = 無理数:有理数:無理数 を a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:無理数:有理数
になるって事でしょう?
しかし、
(3)の x,y,z を、全て整数比の無理数とおくと、
(3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:有理数:有理数
にもなります。
よって、「(4)はx,y,zが有理数の場合は、成立しない。」理由にはなっていません。
-----
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください
に対して、私が反論したところです。
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください。
715日高
2021/03/11(木) 10:39:15.06ID:yQRyqmew >713
というのは
r=n^{1/(n-1)}を共通の無理数で割れば r=n^{1/(n-1)}になる
と主張しているのか
よく、意味がわかりません。
というのは
r=n^{1/(n-1)}を共通の無理数で割れば r=n^{1/(n-1)}になる
と主張しているのか
よく、意味がわかりません。
2021/03/11(木) 10:39:15.28ID:1jnNdeV1
710 名前:日高[] 投稿日:2021/03/11(木) 09:35:29.63 ID:yQRyqmew [9/11]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
711 名前:日高[] 投稿日:2021/03/11(木) 09:40:41.25 ID:yQRyqmew [10/11]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
711 名前:日高[] 投稿日:2021/03/11(木) 09:40:41.25 ID:yQRyqmew [10/11]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
717レスの無駄
2021/03/11(木) 10:40:00.83ID:1jnNdeV1 246 名前:日高[] 投稿日:2021/02/21(日) 10:07:10.49 ID:zINpMgMG [23/29]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
247 名前:日高[] 投稿日:2021/02/21(日) 10:09:25.21 ID:zINpMgMG [24/29]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
248 名前:日高[] 投稿日:2021/02/21(日) 10:12:03.66 ID:zINpMgMG [25/29]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
249 名前:日高[] 投稿日:2021/02/21(日) 10:12:59.47 ID:zINpMgMG [26/29]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
247 名前:日高[] 投稿日:2021/02/21(日) 10:09:25.21 ID:zINpMgMG [24/29]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
248 名前:日高[] 投稿日:2021/02/21(日) 10:12:03.66 ID:zINpMgMG [25/29]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
249 名前:日高[] 投稿日:2021/02/21(日) 10:12:59.47 ID:zINpMgMG [26/29]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
718レスの無駄
2021/03/11(木) 10:40:24.33ID:1jnNdeV1 250 名前:日高[] 投稿日:2021/02/21(日) 10:13:51.44 ID:zINpMgMG [27/29]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
251 名前:日高[] 投稿日:2021/02/21(日) 10:14:39.78 ID:zINpMgMG [28/29]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
252 名前:日高[] 投稿日:2021/02/21(日) 10:15:24.22 ID:zINpMgMG [29/29]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
251 名前:日高[] 投稿日:2021/02/21(日) 10:14:39.78 ID:zINpMgMG [28/29]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
252 名前:日高[] 投稿日:2021/02/21(日) 10:15:24.22 ID:zINpMgMG [29/29]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
719レスの無駄
2021/03/11(木) 10:41:19.89ID:1jnNdeV1 256 名前:日高[] 投稿日:2021/02/21(日) 10:36:16.50 ID:zINpMgMG [30/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
257 名前:日高[] 投稿日:2021/02/21(日) 10:40:20.50 ID:zINpMgMG [31/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
258 名前:日高[] 投稿日:2021/02/21(日) 10:41:51.72 ID:zINpMgMG [32/46]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
259 名前:日高[] 投稿日:2021/02/21(日) 10:42:37.14 ID:zINpMgMG [33/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
257 名前:日高[] 投稿日:2021/02/21(日) 10:40:20.50 ID:zINpMgMG [31/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
258 名前:日高[] 投稿日:2021/02/21(日) 10:41:51.72 ID:zINpMgMG [32/46]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
259 名前:日高[] 投稿日:2021/02/21(日) 10:42:37.14 ID:zINpMgMG [33/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
720レスの無駄
2021/03/11(木) 10:41:50.95ID:1jnNdeV1 260 名前:日高[] 投稿日:2021/02/21(日) 10:43:15.44 ID:zINpMgMG [34/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
261 名前:日高[] 投稿日:2021/02/21(日) 10:43:49.34 ID:zINpMgMG [35/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
262 名前:日高[] 投稿日:2021/02/21(日) 10:44:36.71 ID:zINpMgMG [36/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
263 名前:日高[] 投稿日:2021/02/21(日) 11:25:00.86 ID:zINpMgMG [37/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
261 名前:日高[] 投稿日:2021/02/21(日) 10:43:49.34 ID:zINpMgMG [35/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
262 名前:日高[] 投稿日:2021/02/21(日) 10:44:36.71 ID:zINpMgMG [36/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
263 名前:日高[] 投稿日:2021/02/21(日) 11:25:00.86 ID:zINpMgMG [37/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
721レスの無駄
2021/03/11(木) 10:42:24.77ID:1jnNdeV1 264 名前:日高[] 投稿日:2021/02/21(日) 11:26:01.97 ID:zINpMgMG [38/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
269 名前:日高[] 投稿日:2021/02/21(日) 12:27:05.15 ID:zINpMgMG [41/46]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
270 名前:日高[] 投稿日:2021/02/21(日) 12:28:03.12 ID:zINpMgMG [42/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
271 名前:日高[] 投稿日:2021/02/21(日) 12:29:05.96 ID:zINpMgMG [43/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
272 名前:日高[] 投稿日:2021/02/21(日) 12:29:49.31 ID:zINpMgMG [44/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
269 名前:日高[] 投稿日:2021/02/21(日) 12:27:05.15 ID:zINpMgMG [41/46]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
270 名前:日高[] 投稿日:2021/02/21(日) 12:28:03.12 ID:zINpMgMG [42/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
271 名前:日高[] 投稿日:2021/02/21(日) 12:29:05.96 ID:zINpMgMG [43/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
272 名前:日高[] 投稿日:2021/02/21(日) 12:29:49.31 ID:zINpMgMG [44/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
722132人目の素数さん
2021/03/11(木) 10:42:47.18ID:9mBux+fy >>698
>しかし、その場合、式は成立しません。
式ってどの式ですか?
>x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。(>679)
の(4)はx:yが任意の整数比となる解を持たないという意味ですか?
>(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、x,yは整数比とならない。
とありますから,x,yは無理数でもいいんですよ。
本当に(4)にはx:yが整数比となる解はないと主張されるんですか?
>しかし、その場合、式は成立しません。
式ってどの式ですか?
>x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。(>679)
の(4)はx:yが任意の整数比となる解を持たないという意味ですか?
>(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、x,yは整数比とならない。
とありますから,x,yは無理数でもいいんですよ。
本当に(4)にはx:yが整数比となる解はないと主張されるんですか?
723レスの無駄
2021/03/11(木) 10:42:49.45ID:1jnNdeV1 273 名前:日高[] 投稿日:2021/02/21(日) 12:30:40.72 ID:zINpMgMG [45/46]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
274 名前:日高[] 投稿日:2021/02/21(日) 12:32:30.13 ID:zINpMgMG [46/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
274 名前:日高[] 投稿日:2021/02/21(日) 12:32:30.13 ID:zINpMgMG [46/46]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
724レスの無駄
2021/03/11(木) 10:43:25.64ID:1jnNdeV1 283 名前:日高[] 投稿日:2021/02/21(日) 15:40:12.04 ID:zINpMgMG [48/63]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
284 名前:日高[] 投稿日:2021/02/21(日) 15:40:53.99 ID:zINpMgMG [49/63]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
285 名前:日高[] 投稿日:2021/02/21(日) 15:41:51.31 ID:zINpMgMG [50/63]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
286 名前:日高[] 投稿日:2021/02/21(日) 15:42:37.78 ID:zINpMgMG [51/63]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
284 名前:日高[] 投稿日:2021/02/21(日) 15:40:53.99 ID:zINpMgMG [49/63]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
285 名前:日高[] 投稿日:2021/02/21(日) 15:41:51.31 ID:zINpMgMG [50/63]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
286 名前:日高[] 投稿日:2021/02/21(日) 15:42:37.78 ID:zINpMgMG [51/63]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
725レスの無駄
2021/03/11(木) 10:44:01.45ID:1jnNdeV1 287 名前:日高[] 投稿日:2021/02/21(日) 15:43:22.99 ID:zINpMgMG [52/63]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
288 名前:日高[] 投稿日:2021/02/21(日) 15:43:58.58 ID:zINpMgMG [53/63]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
289 名前:日高[] 投稿日:2021/02/21(日) 15:47:19.09 ID:zINpMgMG [54/63]
>282
仮定するにあたって何らかの貢献をしていますか?
r=n^{1/(n-1)}となります。
292 名前:日高[] 投稿日:2021/02/21(日) 15:56:22.30 ID:zINpMgMG [56/63]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
288 名前:日高[] 投稿日:2021/02/21(日) 15:43:58.58 ID:zINpMgMG [53/63]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
289 名前:日高[] 投稿日:2021/02/21(日) 15:47:19.09 ID:zINpMgMG [54/63]
>282
仮定するにあたって何らかの貢献をしていますか?
r=n^{1/(n-1)}となります。
292 名前:日高[] 投稿日:2021/02/21(日) 15:56:22.30 ID:zINpMgMG [56/63]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
726レスの無駄
2021/03/11(木) 10:44:32.44ID:1jnNdeV1 294 名前:日高[] 投稿日:2021/02/21(日) 16:08:08.62 ID:zINpMgMG [57/63]
>293
ではそうなることを証明してください。
(2)を、逆算すると、(1)となります。
(2)は、AB=aCD(1/a)となるので、
AB=aCD(1/a)ならば、A=aCのとき、B=D(1/a)となります。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となります。
295 名前:日高[] 投稿日:2021/02/21(日) 16:09:09.50 ID:zINpMgMG [58/63]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
296 名前:日高[] 投稿日:2021/02/21(日) 16:09:55.75 ID:zINpMgMG [59/63]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
297 名前:日高[] 投稿日:2021/02/21(日) 16:10:42.22 ID:zINpMgMG [60/63]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
>293
ではそうなることを証明してください。
(2)を、逆算すると、(1)となります。
(2)は、AB=aCD(1/a)となるので、
AB=aCD(1/a)ならば、A=aCのとき、B=D(1/a)となります。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となります。
295 名前:日高[] 投稿日:2021/02/21(日) 16:09:09.50 ID:zINpMgMG [58/63]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
296 名前:日高[] 投稿日:2021/02/21(日) 16:09:55.75 ID:zINpMgMG [59/63]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
297 名前:日高[] 投稿日:2021/02/21(日) 16:10:42.22 ID:zINpMgMG [60/63]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
727日高
2021/03/11(木) 10:53:58.40ID:yQRyqmew >714
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
です。
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
です。
728日高
2021/03/11(木) 10:56:36.45ID:yQRyqmew 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
729日高
2021/03/11(木) 10:57:36.72ID:yQRyqmew (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
730132人目の素数さん
2021/03/11(木) 11:02:16.11ID:mAwPyFKC >>727
> >714
> 「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください
>
> (3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
> (4)の解は(3)の解のa^{1/(n-1)}倍となる。
> (4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
> です。
それは、
(3) の x:y:z = 無理数:有理数:無理数 を a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:無理数:有理数
になるって事でしょう?
しかし、
(3)の x,y,z を、全て整数比の無理数とおくと、
(3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:有理数:有理数
にもなります。
よって、「(4)はx,y,zが有理数の場合は、成立しない。」理由にはなっていません。
ーーーーー
やはり「(4)はx,y,zが有理数の場合は、成立するか」は不明、
よって 式 s^n+t^n=u^n…(C) が成り立つかも不明なのでは?
> >714
> 「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください
>
> (3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
> (4)の解は(3)の解のa^{1/(n-1)}倍となる。
> (4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
> です。
それは、
(3) の x:y:z = 無理数:有理数:無理数 を a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:無理数:有理数
になるって事でしょう?
しかし、
(3)の x,y,z を、全て整数比の無理数とおくと、
(3) の x:y:z = 無理数:無理数:無理数 a^{1/(n-1)}倍 して、
(4) の x:y:z = 有理数:有理数:有理数
にもなります。
よって、「(4)はx,y,zが有理数の場合は、成立しない。」理由にはなっていません。
ーーーーー
やはり「(4)はx,y,zが有理数の場合は、成立するか」は不明、
よって 式 s^n+t^n=u^n…(C) が成り立つかも不明なのでは?
731日高
2021/03/11(木) 11:05:29.95ID:yQRyqmew >722
本当に(4)にはx:yが整数比となる解はないと主張されるんですか?
x:y:zが、整数比になっても、成立しません。
本当に(4)にはx:yが整数比となる解はないと主張されるんですか?
x:y:zが、整数比になっても、成立しません。
732日高
2021/03/11(木) 12:14:47.74ID:yQRyqmew >730
(3) の x:y:z = 無理数:無理数:無理数
が、成立するならば、x,y,zは有理数となります。
(3) の x:y:z = 無理数:無理数:無理数
が、成立するならば、x,y,zは有理数となります。
733無駄の極致
2021/03/11(木) 13:01:08.42ID:1jnNdeV1 727 名前:日高[] 投稿日:2021/03/11(木) 10:53:58.40 ID:yQRyqmew [13/17]
>714
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
です。
728 名前:日高[] 投稿日:2021/03/11(木) 10:56:36.45 ID:yQRyqmew [14/17]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
729 名前:日高[] 投稿日:2021/03/11(木) 10:57:36.72 ID:yQRyqmew [15/17]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
>714
「(4)はx,y,zが有理数の場合は、成立しない。」理由を教えてください
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
です。
728 名前:日高[] 投稿日:2021/03/11(木) 10:56:36.45 ID:yQRyqmew [14/17]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
729 名前:日高[] 投稿日:2021/03/11(木) 10:57:36.72 ID:yQRyqmew [15/17]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
734132人目の素数さん
2021/03/11(木) 15:41:43.21ID:6QCLyDXY735日高
2021/03/11(木) 16:40:50.92ID:yQRyqmew >734
√2:√3:√5でも、ですか?
x,y,zは、整数比となりません。
√2:√3:√5でも、ですか?
x,y,zは、整数比となりません。
736132人目の素数さん
2021/03/11(木) 17:04:51.39ID:6QCLyDXY >>732は間違いということですか?
737日高
2021/03/11(木) 17:49:06.50ID:yQRyqmew >732
x^2+y^2=z^2
のx,y,zが無理数で、整数比となるならば、
x,y,zは、有理数で整数比となる。
という意味です。
x^2+y^2=z^2
のx,y,zが無理数で、整数比となるならば、
x,y,zは、有理数で整数比となる。
という意味です。
738日高
2021/03/11(木) 17:54:20.02ID:yQRyqmew 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
739日高
2021/03/11(木) 17:55:40.99ID:yQRyqmew (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
740132人目の素数さん
2021/03/11(木) 18:17:34.76ID:6QCLyDXY2021/03/11(木) 18:40:51.80ID:1jnNdeV1
738 名前:日高[] 投稿日:2021/03/11(木) 17:54:20.02 ID:yQRyqmew [20/21]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
739 名前:日高[] 投稿日=F2021/03/11(木) 17:55:40.99 ID:yQRyqmew [21/21]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
739 名前:日高[] 投稿日=F2021/03/11(木) 17:55:40.99 ID:yQRyqmew [21/21]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
742132人目の素数さん
2021/03/11(木) 18:46:45.27ID:mAwPyFKC >>732
> >730
> (3) の x:y:z = 無理数:無理数:無理数
>
> が、成立するならば、x,y,zは有理数となります。
??? よく分かりません。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
と言っているのでしょうか?
> >730
> (3) の x:y:z = 無理数:無理数:無理数
>
> が、成立するならば、x,y,zは有理数となります。
??? よく分かりません。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
と言っているのでしょうか?
743日高
2021/03/11(木) 19:05:01.87ID:yQRyqmew >742
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
と言っているのでしょうか?
はい。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
と言っているのでしょうか?
はい。
744日高
2021/03/11(木) 19:07:21.90ID:yQRyqmew >742
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
と言っているのでしょうか?
はい。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
と言っているのでしょうか?
はい。
745132人目の素数さん
2021/03/11(木) 19:14:07.90ID:mAwPyFKC 712 名前:日高[] 投稿日:2021/03/11(木) 10:08:20.25 ID:yQRyqmew [11/21]
>709
以下の形式で書いてもらって良いですか?
s^n+t^n=u^n…(C) は成立しない。」は、
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
とは、関係ありません。
711を見て下さい。
>709
以下の形式で書いてもらって良いですか?
s^n+t^n=u^n…(C) は成立しない。」は、
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
とは、関係ありません。
711を見て下さい。
746132人目の素数さん
2021/03/11(木) 19:14:43.87ID:mAwPyFKC747日高
2021/03/11(木) 19:19:22.14ID:yQRyqmew748日高
2021/03/11(木) 19:20:42.27ID:yQRyqmew 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
749日高
2021/03/11(木) 19:21:46.00ID:yQRyqmew (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
750日高
2021/03/11(木) 19:42:42.38ID:yQRyqmew 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
751日高
2021/03/11(木) 19:43:47.52ID:yQRyqmew 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
752132人目の素数さん
2021/03/11(木) 19:45:40.44ID:mAwPyFKC753132人目の素数さん
2021/03/11(木) 20:57:34.51ID:VXQmKzLw754132人目の素数さん
2021/03/11(木) 21:27:20.33ID:VXQmKzLw >>748
01行目-4行目 省略
05行目 (3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
06行目 (4)の解は(3)の解のa^{1/(n-1)}倍となる。
07行目 (4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
08行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
09行目 (3)のx,yが無理数の場合は、x=sw、y=twとおく。
10行目 (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
11行目 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
12行目 s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
13行目 (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
14行目 (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
15行目 (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
16行目 (4)はx,y,zが有理数の場合は、成立しない。
5行目、(3)はyが有理数のとき、xは無理数となる。
あなたが>>429で書いたとおり、
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、5行目、(3)の解は、整数比とならない。とは言えません。インチキのウソです。
(3)の解に有理数比の解があれば、(4)の解に有理数の解がある。
(3)の解に有理数比の解がなければ、(4)の解に有理数の解がない。
(3)の解にx、y、zが有理数比のものがあるとも、ないとも、いえないので
(4)の解にx、y、zが有理数のものがあるとも、ないとも、いえません。
よって、7行目、(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならない、とは言えません。
インチキのウソです。
16行目は単に7行目のインチキのウソを書き写しているだけなので、
16行目、(4)はx,y,zが有理数の場合は、成立しない。インチキのウソです。
01行目-4行目 省略
05行目 (3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
06行目 (4)の解は(3)の解のa^{1/(n-1)}倍となる。
07行目 (4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
08行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
09行目 (3)のx,yが無理数の場合は、x=sw、y=twとおく。
10行目 (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
11行目 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
12行目 s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
13行目 (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
14行目 (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
15行目 (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
16行目 (4)はx,y,zが有理数の場合は、成立しない。
5行目、(3)はyが有理数のとき、xは無理数となる。
あなたが>>429で書いたとおり、
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、5行目、(3)の解は、整数比とならない。とは言えません。インチキのウソです。
(3)の解に有理数比の解があれば、(4)の解に有理数の解がある。
(3)の解に有理数比の解がなければ、(4)の解に有理数の解がない。
(3)の解にx、y、zが有理数比のものがあるとも、ないとも、いえないので
(4)の解にx、y、zが有理数のものがあるとも、ないとも、いえません。
よって、7行目、(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならない、とは言えません。
インチキのウソです。
16行目は単に7行目のインチキのウソを書き写しているだけなので、
16行目、(4)はx,y,zが有理数の場合は、成立しない。インチキのウソです。
755132人目の素数さん
2021/03/11(木) 21:29:18.06ID:VXQmKzLw756132人目の素数さん
2021/03/11(木) 22:07:50.74ID:VXQmKzLw >>743
x^2+y^2=(x+√3)^2…(5)
x=s√3、y=t√3と置きます。代入して
s^2+t^2=(s+1)^2…(D)
s=12,t=5は(D)の解です。(D) は(5)のx、yを別の文字を使って変形した別の式です。x=12,y=5は(5)の解ではありません。
別の文字を使った時点で、元の式とは違う式です。
x=s√3、y=t√3なのだから、当然x=12√3、y=5√3は(5)の解です。x=12、y=5は(5)の解ではありません。
x^2+y^2=(x+2)^2…(3)
(3)と(5)も別の式です。(3)の解x=12,y=5,z=13は(5)の解ではありません。
(5)の解x=12√3、y=5√3、z=13√3は(3)の解ではありません。
12と12√3は別の数です。(3)と(5)は別々の数を解にもつ別々の式です。
(3)の解は絶対に(5)の解にならない。(5)の解は絶対に(3)の解にはならない。
x^2+y^2=(x+√3)^2…(5)
x=s√3、y=t√3と置きます。代入して
s^2+t^2=(s+1)^2…(D)
s=12,t=5は(D)の解です。(D) は(5)のx、yを別の文字を使って変形した別の式です。x=12,y=5は(5)の解ではありません。
別の文字を使った時点で、元の式とは違う式です。
x=s√3、y=t√3なのだから、当然x=12√3、y=5√3は(5)の解です。x=12、y=5は(5)の解ではありません。
x^2+y^2=(x+2)^2…(3)
(3)と(5)も別の式です。(3)の解x=12,y=5,z=13は(5)の解ではありません。
(5)の解x=12√3、y=5√3、z=13√3は(3)の解ではありません。
12と12√3は別の数です。(3)と(5)は別々の数を解にもつ別々の式です。
(3)の解は絶対に(5)の解にならない。(5)の解は絶対に(3)の解にはならない。
2021/03/11(木) 23:26:27.34ID:1jnNdeV1
748 名前:日高[] 投稿日:2021/03/11(木) 19:20:42.27 ID:yQRyqmew [25/28]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
749 名前:日高[] 投稿日:2021/03/11(木) 19:21:46.00 ID:yQRyqmew [26/28]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
750 名前:日高[] 投稿日:2021/03/11(木) 19:42:42.38 ID:yQRyqmew [27/28]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
751 名前:日高[] 投稿日:2021/03/11(木) 19:43:47.52 ID:yQRyqmew [28/28]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
749 名前:日高[] 投稿日:2021/03/11(木) 19:21:46.00 ID:yQRyqmew [26/28]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
750 名前:日高[] 投稿日:2021/03/11(木) 19:42:42.38 ID:yQRyqmew [27/28]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
751 名前:日高[] 投稿日:2021/03/11(木) 19:43:47.52 ID:yQRyqmew [28/28]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/11(木) 23:27:25.07ID:1jnNdeV1
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/11(木) 23:28:05.88ID:1jnNdeV1
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/12(金) 08:09:59.33ID:oTSx6FCk
308 名前:日高[] 投稿日:2021/02/21(日) 17:52:29.47 ID:zINpMgMG [65/70]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
309 名前:日高[] 投稿日:2021/02/21(日) 17:53:18.47 ID:zINpMgMG [66/70]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
310 名前:日高[] 投稿日:2021/02/21(日) 17:54:10.72 ID:zINpMgMG [67/70]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
309 名前:日高[] 投稿日:2021/02/21(日) 17:53:18.47 ID:zINpMgMG [66/70]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
310 名前:日高[] 投稿日:2021/02/21(日) 17:54:10.72 ID:zINpMgMG [67/70]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
761無駄の極致と言えよう
2021/03/12(金) 08:11:40.38ID:oTSx6FCk 311 名前:日高[] 投稿日:2021/02/21(日) 17:55:05.20 ID:zINpMgMG [68/70]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
334 名前:日高[] 投稿日:2021/02/21(日) 19:50:05.99 ID:zINpMgMG [78/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
335 名前:日高[] 投稿日:2021/02/21(日) 19:51:01.28 ID:zINpMgMG [79/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
336 名前:日高[] 投稿日:2021/02/21(日) 19:51:53.38 ID:zINpMgMG [80/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
334 名前:日高[] 投稿日:2021/02/21(日) 19:50:05.99 ID:zINpMgMG [78/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
335 名前:日高[] 投稿日:2021/02/21(日) 19:51:01.28 ID:zINpMgMG [79/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
336 名前:日高[] 投稿日:2021/02/21(日) 19:51:53.38 ID:zINpMgMG [80/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
762132人目の素数さん
2021/03/12(金) 08:12:35.81ID:oTSx6FCk 340 名前:日高[] 投稿日:2021/02/21(日) 19:58:15.79 ID:zINpMgMG [83/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
341 名前:日高[] 投稿日:2021/02/21(日) 19:59:26.79 ID:zINpMgMG [84/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
351 名前:日高[] 投稿日:2021/02/21(日) 21:04:37.37 ID:zINpMgMG [89/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
352 名前:日高[] 投稿日:2021/02/21(日) 21:05:23.41 ID:zINpMgMG [90/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
341 名前:日高[] 投稿日:2021/02/21(日) 19:59:26.79 ID:zINpMgMG [84/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
351 名前:日高[] 投稿日:2021/02/21(日) 21:04:37.37 ID:zINpMgMG [89/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
352 名前:日高[] 投稿日:2021/02/21(日) 21:05:23.41 ID:zINpMgMG [90/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
763132人目の素数さん
2021/03/12(金) 08:13:13.54ID:oTSx6FCk 354 名前:日高[] 投稿日:2021/02/21(日) 21:06:10.80 ID:zINpMgMG [91/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
357 名前:日高[] 投稿日:2021/02/21(日) 21:12:12.62 ID:zINpMgMG [93/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
358 名前:日高[] 投稿日:2021/02/21(日) 21:12:51.15 ID:zINpMgMG [94/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
359 名前:日高[] 投稿日:2021/02/21(日) 21:13:34.79 ID:zINpMgMG [95/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
357 名前:日高[] 投稿日:2021/02/21(日) 21:12:12.62 ID:zINpMgMG [93/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
358 名前:日高[] 投稿日:2021/02/21(日) 21:12:51.15 ID:zINpMgMG [94/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
359 名前:日高[] 投稿日:2021/02/21(日) 21:13:34.79 ID:zINpMgMG [95/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
764132人目の素数さん
2021/03/12(金) 08:14:13.19ID:oTSx6FCk 377 名前:日高[] 投稿日:2021/02/22(月) 06:50:35.46 ID:PZMTv96e [4/9]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
378 名前:日高[] 投稿日:2021/02/22(月) 06:52:50.32 ID:PZMTv96e [5/9]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
379 名前:日高[] 投稿日:2021/02/22(月) 06:53:52.32 ID:PZMTv96e [6/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
380 名前:日高[] 投稿日:2021/02/22(月) 06:54:41.65 ID:PZMTv96e [7/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
378 名前:日高[] 投稿日:2021/02/22(月) 06:52:50.32 ID:PZMTv96e [5/9]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
379 名前:日高[] 投稿日:2021/02/22(月) 06:53:52.32 ID:PZMTv96e [6/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
380 名前:日高[] 投稿日:2021/02/22(月) 06:54:41.65 ID:PZMTv96e [7/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
765132人目の素数さん
2021/03/12(金) 08:14:56.31ID:oTSx6FCk 381 名前:日高[] 投稿日:2021/02/22(月) 06:56:16.55 ID:PZMTv96e [8/9]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
382 名前:日高[] 投稿日:2021/02/22(月) 08:13:59.12 ID:PZMTv96e [9/9]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
390 名前:日高[] 投稿日:2021/02/22(月) 12:11:37.60 ID:PZMTv96e [10/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
382 名前:日高[] 投稿日:2021/02/22(月) 08:13:59.12 ID:PZMTv96e [9/9]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
390 名前:日高[] 投稿日:2021/02/22(月) 12:11:37.60 ID:PZMTv96e [10/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
766まるで何の進歩もない
2021/03/12(金) 08:15:50.86ID:oTSx6FCk 391 名前:日高[] 投稿日:2021/02/22(月) 12:12:29.30 ID:PZMTv96e [11/34]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
名前:日高[] 投稿日:2021/02/22(月) 12:13:18.12 ID:PZMTv96e [12/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
393 名前:日高[] 投稿日:2021/02/22(月) 12:14:19.58 ID:PZMTv96e [13/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
394 名前:日高[] 投稿日:2021/02/22(月) 12:15:38.62 ID:PZMTv96e [14/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
名前:日高[] 投稿日:2021/02/22(月) 12:13:18.12 ID:PZMTv96e [12/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
393 名前:日高[] 投稿日:2021/02/22(月) 12:14:19.58 ID:PZMTv96e [13/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
394 名前:日高[] 投稿日:2021/02/22(月) 12:15:38.62 ID:PZMTv96e [14/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
767日高
2021/03/12(金) 08:36:46.98ID:HbP2oJnt >752
> s^n+t^n=u^n…(C) は成立しない。」は、
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
> とは、関係ありません。
と言ったので、
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
は証明の理由にならないのでは? と聞いています。
n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」は
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
ことに、なります。
> s^n+t^n=u^n…(C) は成立しない。」は、
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
> とは、関係ありません。
と言ったので、
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
は証明の理由にならないのでは? と聞いています。
n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」は
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
ことに、なります。
768132人目の素数さん
2021/03/12(金) 08:44:27.10ID:Ck2SwZkI >>767
> >752
> > s^n+t^n=u^n…(C) は成立しない。」は、
> > 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
> > とは、関係ありません。
> と言ったので、
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
> は証明の理由にならないのでは? と聞いています。
>
> n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」は
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
> ことに、なります。
うーん、よく分かりません。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
「n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか。
> >752
> > s^n+t^n=u^n…(C) は成立しない。」は、
> > 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立つとする。
> > とは、関係ありません。
> と言ったので、
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
> は証明の理由にならないのでは? と聞いています。
>
> n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」は
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
> ことに、なります。
うーん、よく分かりません。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
「n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか。
769日高
2021/03/12(金) 09:38:53.27ID:HbP2oJnt >753
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2x、z=(9^(1/3))x
が(3)の解であると認めています。
(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))=Aとおくと、
A^3+(2A)^3=(A+√3)^3となります。
計算が、合いません。
544は間違いだったと思います。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2x、z=(9^(1/3))x
が(3)の解であると認めています。
(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))=Aとおくと、
A^3+(2A)^3=(A+√3)^3となります。
計算が、合いません。
544は間違いだったと思います。
770132人目の素数さん
2021/03/12(金) 12:23:11.28ID:1zRr76Vm771日高
2021/03/12(金) 17:52:07.95ID:HbP2oJnt >754
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならない、とは言えません。
どうしてでしょうか?
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならない、とは言えません。
どうしてでしょうか?
772日高
2021/03/12(金) 17:56:58.69ID:HbP2oJnt >756
(3)の解は絶対に(5)の解にならない。(5)の解は絶対に(3)の解にはならない。
そうですね。
(3)の解は絶対に(5)の解にならない。(5)の解は絶対に(3)の解にはならない。
そうですね。
773日高
2021/03/12(金) 18:04:52.87ID:HbP2oJnt >768
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
「n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか。
「(3) に整数比の無理数解があれば、は、仮定の話です。(実際には、ありません。)
「n≧3のとき、 s^n+t^n=u^n…(C) は成立する」ことがいえます。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
「n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか。
「(3) に整数比の無理数解があれば、は、仮定の話です。(実際には、ありません。)
「n≧3のとき、 s^n+t^n=u^n…(C) は成立する」ことがいえます。
774日高
2021/03/12(金) 18:09:24.05ID:HbP2oJnt >770
yに無理数を入れると,x:yは整数比にならないんですか。
はい。
yに無理数を入れると,x:yは整数比にならないんですか。
はい。
775日高
2021/03/12(金) 18:12:59.51ID:HbP2oJnt 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
776日高
2021/03/12(金) 18:13:48.38ID:HbP2oJnt (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
777日高
2021/03/12(金) 18:14:35.33ID:HbP2oJnt 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
778日高
2021/03/12(金) 18:15:19.77ID:HbP2oJnt 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
779132人目の素数さん
2021/03/12(金) 18:34:39.38ID:1zRr76Vm >>774
>679
>(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
y=kx (kは有理数,k>0)を代入してみます。x:yが有理数比とするためにkを有理数とするのですが,実は>0の実数なら何でもかまいません。
さらに(an)^{1/(n-1)}=wとおくと,(4)は
(k^n+1)*x^n=(x+w)^n・・・(4)'となります。
(4)'はxについて簡単に解くことができ,従ってy=kxも簡単に求めることができます。
ここで導かれたx,y (y=kx) の値は日高さんにとって何を意味するんですか。
そのx,yは(4)'すなわち(4)の解にはならないんですか。
y=kx (kは有理数)なのだから,x:yは有理数比になりませんか?
上の(4)'式をみれば,(4)は任意の整数比,有理数比どころか,任意の実数比を取りうる,とは思いませんか?
>679
>(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
y=kx (kは有理数,k>0)を代入してみます。x:yが有理数比とするためにkを有理数とするのですが,実は>0の実数なら何でもかまいません。
さらに(an)^{1/(n-1)}=wとおくと,(4)は
(k^n+1)*x^n=(x+w)^n・・・(4)'となります。
(4)'はxについて簡単に解くことができ,従ってy=kxも簡単に求めることができます。
ここで導かれたx,y (y=kx) の値は日高さんにとって何を意味するんですか。
そのx,yは(4)'すなわち(4)の解にはならないんですか。
y=kx (kは有理数)なのだから,x:yは有理数比になりませんか?
上の(4)'式をみれば,(4)は任意の整数比,有理数比どころか,任意の実数比を取りうる,とは思いませんか?
2021/03/12(金) 19:07:34.36ID:oTSx6FCk
775 名前:日高[] 投稿日:2021/03/12(金) 18:12:59.51 ID:HbP2oJnt [7/10]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
776 名前:日高[] 投稿日:2021/03/12(金) 18:13:48.38 ID:HbP2oJnt [8/10]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
777 名前:日高[] 投稿日:2021/03/12(金) 18:14:35.33 ID:HbP2oJnt [9/10]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
778 名前:日高[] 投稿日:2021/03/12(金) 18:15:19.77 ID:HbP2oJnt [10/10]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
776 名前:日高[] 投稿日:2021/03/12(金) 18:13:48.38 ID:HbP2oJnt [8/10]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
777 名前:日高[] 投稿日:2021/03/12(金) 18:14:35.33 ID:HbP2oJnt [9/10]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
778 名前:日高[] 投稿日:2021/03/12(金) 18:15:19.77 ID:HbP2oJnt [10/10]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/12(金) 19:08:55.98ID:oTSx6FCk
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
782132人目の素数さん
2021/03/12(金) 19:08:58.59ID:Ck2SwZkI >>773
> >768
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
> 「n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか。
>
> 「(3) に整数比の無理数解があれば、は、仮定の話です。(実際には、ありません。)
> 「n≧3のとき、 s^n+t^n=u^n…(C) は成立する」ことがいえます。
成り立ったらフェルマーに反例がある事になるじゃないですかwww
すみませんがもう一度お聞きします。(変なところで区切らないでください)
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか?
> >768
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
> 「n≧3のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか。
>
> 「(3) に整数比の無理数解があれば、は、仮定の話です。(実際には、ありません。)
> 「n≧3のとき、 s^n+t^n=u^n…(C) は成立する」ことがいえます。
成り立ったらフェルマーに反例がある事になるじゃないですかwww
すみませんがもう一度お聞きします。(変なところで区切らないでください)
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか?
2021/03/12(金) 19:10:17.46ID:oTSx6FCk
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
784132人目の素数さん
2021/03/12(金) 19:43:21.56ID:3ypPmfvW x^n+y^n=(x+n^{1/(n-1)})^n…(3)においてx,yをうまく選べばx:yを任意の正数比にできます
y=λxとおいて代入するとx^n+λ^nx^n=(x+n^{1/(n-1)})^n
左辺ひく右辺をf(x)とおくとf(x)=x^n+λ^nx^n-(x+n^{1/(n-1)})^n
fは多項式関数なので連続
f(0)<0かつfの最高次係数は正
よって中間値の定理によりある正数xが存在してf(x)=0となります
y=λxとおいて代入するとx^n+λ^nx^n=(x+n^{1/(n-1)})^n
左辺ひく右辺をf(x)とおくとf(x)=x^n+λ^nx^n-(x+n^{1/(n-1)})^n
fは多項式関数なので連続
f(0)<0かつfの最高次係数は正
よって中間値の定理によりある正数xが存在してf(x)=0となります
2021/03/12(金) 20:08:22.57ID:oTSx6FCk
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
786日高
2021/03/12(金) 20:09:30.17ID:HbP2oJnt >779
上の(4)'式をみれば,(4)は任意の整数比,有理数比どころか,任意の実数比を取りうる,とは思いませんか?
すみません。よく意味がわかりません。
上の(4)'式をみれば,(4)は任意の整数比,有理数比どころか,任意の実数比を取りうる,とは思いませんか?
すみません。よく意味がわかりません。
787日高
2021/03/12(金) 20:12:28.81ID:HbP2oJnt >784
x^n+y^n=(x+n^{1/(n-1)})^n…(3)においてx,yをうまく選べばx:yを任意の正数比にできます
y=λxとおいて代入するとx^n+λ^nx^n=(x+n^{1/(n-1)})^n
左辺ひく右辺をf(x)とおくとf(x)=x^n+λ^nx^n-(x+n^{1/(n-1)})^n
fは多項式関数なので連続
f(0)<0かつfの最高次係数は正
よって中間値の定理によりある正数xが存在してf(x)=0となります
すみません。具体例を、挙げていただけないでしょうか。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)においてx,yをうまく選べばx:yを任意の正数比にできます
y=λxとおいて代入するとx^n+λ^nx^n=(x+n^{1/(n-1)})^n
左辺ひく右辺をf(x)とおくとf(x)=x^n+λ^nx^n-(x+n^{1/(n-1)})^n
fは多項式関数なので連続
f(0)<0かつfの最高次係数は正
よって中間値の定理によりある正数xが存在してf(x)=0となります
すみません。具体例を、挙げていただけないでしょうか。
788132人目の素数さん
2021/03/12(金) 20:18:20.43ID:3ypPmfvW >>787
どこを具体的にせよとおっしゃるのでしょうか?
どこを具体的にせよとおっしゃるのでしょうか?
789日高
2021/03/12(金) 20:26:16.81ID:HbP2oJnt >782
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか?
(3) に整数比の無理数解があれば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立する。」
ことが、いえます。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立ちます。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか?
(3) に整数比の無理数解があれば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立する。」
ことが、いえます。
「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立ちます。
790日高
2021/03/12(金) 20:30:54.22ID:HbP2oJnt >788
どこを具体的にせよとおっしゃるのでしょうか?
x^n+y^n=(x+n^{1/(n-1)})^n…(3)においてx,yをうまく選べばx:yを任意の正数比にできます
の具体例を、示して欲しいのですのですが、
どこを具体的にせよとおっしゃるのでしょうか?
x^n+y^n=(x+n^{1/(n-1)})^n…(3)においてx,yをうまく選べばx:yを任意の正数比にできます
の具体例を、示して欲しいのですのですが、
791132人目の素数さん
2021/03/12(金) 20:34:29.29ID:1zRr76Vm >>786
そうですか。意味が分かりませんか。
それではわかるように聞き直します。
>779にあげた
(k^n+1)*x^n=(x+w)^n・・・(4)'
を解いて得られる値をとる x,y は(4)',すなわち(4)の解である。
はい,いいえでお答え下さい。
そうですか。意味が分かりませんか。
それではわかるように聞き直します。
>779にあげた
(k^n+1)*x^n=(x+w)^n・・・(4)'
を解いて得られる値をとる x,y は(4)',すなわち(4)の解である。
はい,いいえでお答え下さい。
792132人目の素数さん
2021/03/12(金) 20:37:42.03ID:3ypPmfvW >>790
> >788
> どこを具体的にせよとおっしゃるのでしょうか?
>
> x^n+y^n=(x+n^{1/(n-1)})^n…(3)においてx,yをうまく選べばx:yを任意の正数比にできます
>
> の具体例を、示して欲しいのですのですが、
中間値の定理は存在定理ですから解を具体的に述べることはできません。
sup{x|f(x)<=0}でよければこれで示したことになりますが。
> >788
> どこを具体的にせよとおっしゃるのでしょうか?
>
> x^n+y^n=(x+n^{1/(n-1)})^n…(3)においてx,yをうまく選べばx:yを任意の正数比にできます
>
> の具体例を、示して欲しいのですのですが、
中間値の定理は存在定理ですから解を具体的に述べることはできません。
sup{x|f(x)<=0}でよければこれで示したことになりますが。
793132人目の素数さん
2021/03/12(金) 21:34:07.00ID:XhrQ/HKi >>769
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2xとおく、
左辺
x^3+y^3=9x^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
よってx^3+y^3=(x+3^{1/(3-1)})^3
このx、y、zは明らかに(3)の解である。
計算は、あっています。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2xとおく、
左辺
x^3+y^3=9x^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
よってx^3+y^3=(x+3^{1/(3-1)})^3
このx、y、zは明らかに(3)の解である。
計算は、あっています。
794132人目の素数さん
2021/03/12(金) 21:40:54.25ID:XhrQ/HKi >>771
5行目、(3)はyが有理数のとき、xは無理数となる。
あなたが>>429で書いたとおり、
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、5行目、(3)の解は、整数比とならない。とは言えません。インチキのウソです。
5行目はインチキのウソです。(3)の解に有理数比の解があれば、(4)の解に有理数の解がある。
5行目はインチキのウソです。(3)の解に有理数比の解がなければ、(4)の解に有理数の解がない。
5行目はインチキのウソです。(3)の解にx、y、zが有理数比のものがあるとも、ないとも、いえないので
(4)の解にx、y、zが有理数のものがあるとも、ないとも、いえません。
5行目はインチキのウソです。
よって、7行目、(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならない、とは言えません。
7行目はインチキのウソです。
5行目、7行目はインチキのウソです。16行目は単に7行目のインチキのウソを書き写しているだけなので、
16行目はインチキのウソです。
5行目のインチキのウソを証拠にする7行目はインチキのウソです。
7行目のインチキのウソを証拠tにする16行目はインチキのウソです。
5行目、(3)はyが有理数のとき、xは無理数となる。
あなたが>>429で書いたとおり、
n≧3のときは、(3)の解でyが無理数のもののうち、x、y、zが有理数比のものがあるとも、ないとも、いえません。
つまり、(3)のすべての解についていえば、x、y、zが有理数比のものがあるとも、ないとも、いえません。
よって、5行目、(3)の解は、整数比とならない。とは言えません。インチキのウソです。
5行目はインチキのウソです。(3)の解に有理数比の解があれば、(4)の解に有理数の解がある。
5行目はインチキのウソです。(3)の解に有理数比の解がなければ、(4)の解に有理数の解がない。
5行目はインチキのウソです。(3)の解にx、y、zが有理数比のものがあるとも、ないとも、いえないので
(4)の解にx、y、zが有理数のものがあるとも、ないとも、いえません。
5行目はインチキのウソです。
よって、7行目、(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならない、とは言えません。
7行目はインチキのウソです。
5行目、7行目はインチキのウソです。16行目は単に7行目のインチキのウソを書き写しているだけなので、
16行目はインチキのウソです。
5行目のインチキのウソを証拠にする7行目はインチキのウソです。
7行目のインチキのウソを証拠tにする16行目はインチキのウソです。
795132人目の素数さん
2021/03/12(金) 22:08:00.41ID:XhrQ/HKi >>772
x^2+y^2=(x+√3)^2…(5)
x=s√3、y=t√3、s,tは有理数と置きます。代入して
s^2+t^2=(s+1)^2…(D)
(5)の解は(D)の解になりません。x=12√3、y=5√3は(5)の解です。s=12√3、t=5√3は(D)の解ではありません
(D)の解は(5)の解になりません。s=12、t=5は(D)の解です。x=12、y=5は(D)の解ではありません
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)のx=sw、y=twとおく。
s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)
(3)の解は(A)の解になりません。x=sw、y=twは(3)の解です。s=sw、t=twは(A)の解ではありません
(A)の解は(3)の解になりません。s=s、t=tは(A)の解です。x=s、y=tは(3)の解ではありません
x^2+y^2=(x+√3)^2…(5)
x=s√3、y=t√3、s,tは有理数と置きます。代入して
s^2+t^2=(s+1)^2…(D)
(5)の解は(D)の解になりません。x=12√3、y=5√3は(5)の解です。s=12√3、t=5√3は(D)の解ではありません
(D)の解は(5)の解になりません。s=12、t=5は(D)の解です。x=12、y=5は(D)の解ではありません
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)のx=sw、y=twとおく。
s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)
(3)の解は(A)の解になりません。x=sw、y=twは(3)の解です。s=sw、t=twは(A)の解ではありません
(A)の解は(3)の解になりません。s=s、t=tは(A)の解です。x=s、y=tは(3)の解ではありません
796132人目の素数さん
2021/03/12(金) 22:09:57.37ID:XhrQ/HKi797132人目の素数さん
2021/03/12(金) 22:24:16.47ID:Cl0BO7YR 任意のs>0,t>0に対し
u=(s^n+t^n)^{1/n}とおくと
s^n+t^n=u^n を満たす
s^n+t^n=(s+(u-s))^n
↓両辺に(1/(u-s))^nをかける
(s/(u-s))^n+(t/(u-s))^n=(s/(u-s)+1)^n
↓両辺にr^nをかける
(rs/(u-s))^n+(rt/(u-s))^n=(rs/(u-s)+r)^n
x=rs/(u-s), y=rt/(u-s) は x^n+y^n=(x+r)^n の解であり、x:y=s:tである
u=(s^n+t^n)^{1/n}とおくと
s^n+t^n=u^n を満たす
s^n+t^n=(s+(u-s))^n
↓両辺に(1/(u-s))^nをかける
(s/(u-s))^n+(t/(u-s))^n=(s/(u-s)+1)^n
↓両辺にr^nをかける
(rs/(u-s))^n+(rt/(u-s))^n=(rs/(u-s)+r)^n
x=rs/(u-s), y=rt/(u-s) は x^n+y^n=(x+r)^n の解であり、x:y=s:tである
798132人目の素数さん
2021/03/13(土) 07:19:58.25ID:KaI2Q7jz >>789
> >782
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
> 「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか?
>
> (3) に整数比の無理数解があれば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立する。」
> ことが、いえます。
>
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立ちます。
いやー、日高ワールド全開っていう感じですね。
それで、
・(3) に整数比の無理数解があれば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立する。」
・「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
を使って、最終目標である
「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
はどうやって言えるのですか?
> >782
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立てば、
> 「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」が言えるという事でしょうか?
>
> (3) に整数比の無理数解があれば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立する。」
> ことが、いえます。
>
> 「(3) に整数比の無理数解があれば、 (3) に有理数解がある」が成り立ちます。
いやー、日高ワールド全開っていう感じですね。
それで、
・(3) に整数比の無理数解があれば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立する。」
・「(3) に整数比の無理数解があれば、 (3) に有理数解がある」
を使って、最終目標である
「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
はどうやって言えるのですか?
799日高
2021/03/13(土) 09:15:53.27ID:0DMZ3jGF >791
(k^n+1)*x^n=(x+w)^n・・・(4)'
を解いて得られる値をとる x,y は(4)',すなわち(4)の解である。
式の意味がわかりません。
(k^n+1)*x^n=(x+w)^n・・・(4)'
を解いて得られる値をとる x,y は(4)',すなわち(4)の解である。
式の意味がわかりません。
800日高
2021/03/13(土) 09:17:49.71ID:0DMZ3jGF >792
sup{x|f(x)<=0}でよければこれで示したことになりますが。
式の意味がわかりません。
sup{x|f(x)<=0}でよければこれで示したことになりますが。
式の意味がわかりません。
2021/03/13(土) 09:29:16.69ID:HCVbCFDA
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/13(土) 09:29:50.31ID:HCVbCFDA
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/13(土) 09:32:03.27ID:HCVbCFDA
401 名前:日高[] 投稿日:2021/02/22(月) 16:13:37.31 ID:PZMTv96e [18/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
402 名前:日高[] 投稿日:2021/02/22(月) 16:14:23.65 ID:PZMTv96e [19/34]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
403 名前:日高[] 投稿日:2021/02/22(月) 16:15:12.79 ID:PZMTv96e [20/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
402 名前:日高[] 投稿日:2021/02/22(月) 16:14:23.65 ID:PZMTv96e [19/34]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
403 名前:日高[] 投稿日:2021/02/22(月) 16:15:12.79 ID:PZMTv96e [20/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
2021/03/13(土) 09:33:23.21ID:HCVbCFDA
416 名前:日高[] 投稿日:2021/02/22(月) 17:50:14.88 ID:PZMTv96e [26/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
417 名前:日高[] 投稿日:2021/02/22(月) 17:51:30.71 ID:PZMTv96e [27/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
418 名前:日高[] 投稿日:2021/02/22(月) 17:53:05.14 ID:PZMTv96e [28/34]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
417 名前:日高[] 投稿日:2021/02/22(月) 17:51:30.71 ID:PZMTv96e [27/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
418 名前:日高[] 投稿日:2021/02/22(月) 17:53:05.14 ID:PZMTv96e [28/34]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
2021/03/13(土) 09:33:56.41ID:HCVbCFDA
419 名前:日高[] 投稿日:2021/02/22(月) 17:54:07.07 ID:PZMTv96e [29/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
420 名前:日高[] 投稿日:2021/02/22(月) 17:55:01.71 ID:PZMTv96e [30/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
421 名前:日高[] 投稿日:2021/02/22(月) 17:55:52.96 ID:PZMTv96e [31/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
420 名前:日高[] 投稿日:2021/02/22(月) 17:55:01.71 ID:PZMTv96e [30/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
421 名前:日高[] 投稿日:2021/02/22(月) 17:55:52.96 ID:PZMTv96e [31/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
806つまらん、ああつまらん
2021/03/13(土) 09:35:05.21ID:HCVbCFDA 436 名前:日高[] 投稿日:2021/02/23(火) 08:59:31.64 ID:RY6Np+kc [2/8]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
437 名前:日高[] 投稿日:2021/02/23(火) 09:00:46.37 ID:RY6Np+kc [3/8]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
437 名前:日高[] 投稿日:2021/02/23(火) 09:00:46.37 ID:RY6Np+kc [3/8]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
807ただただ空しい
2021/03/13(土) 09:35:37.47ID:HCVbCFDA 438 名前:日高[] 投稿日:2021/02/23(火) 09:01:49.93 ID:RY6Np+kc [4/8]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
439 名前:日高[] 投稿日:2021/02/23(火) 09:02:45.12 ID:RY6Np+kc [5/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
440 名前:日高[] 投稿日:2021/02/23(火) 09:03:38.96 ID:RY6Np+kc [6/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
441 名前:日高[] 投稿日:2021/02/23(火) 09:04:46.50 ID:RY6Np+kc [7/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
442 名前:日高[] 投稿日:2021/02/23(火) 09:32:12.99 ID:RY6Np+kc [8/8]
>433
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)式の解を、2グループに分けます。
Aグループ:yが無理数の(3)の解、例((√31-√3)/2,2√3,(√31+√3)/2)等
Bグループ:yが有理数の(3)の解、例((√(36(√3)-3)-3)/(2√3),3,(√(36(√3)-3)-3)/(2√3)+2)等
例となる、(3)式のnと、n^{1/(n-1)}を示していただけないでしょうか。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
439 名前:日高[] 投稿日:2021/02/23(火) 09:02:45.12 ID:RY6Np+kc [5/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
440 名前:日高[] 投稿日:2021/02/23(火) 09:03:38.96 ID:RY6Np+kc [6/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
441 名前:日高[] 投稿日:2021/02/23(火) 09:04:46.50 ID:RY6Np+kc [7/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
442 名前:日高[] 投稿日:2021/02/23(火) 09:32:12.99 ID:RY6Np+kc [8/8]
>433
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)式の解を、2グループに分けます。
Aグループ:yが無理数の(3)の解、例((√31-√3)/2,2√3,(√31+√3)/2)等
Bグループ:yが有理数の(3)の解、例((√(36(√3)-3)-3)/(2√3),3,(√(36(√3)-3)-3)/(2√3)+2)等
例となる、(3)式のnと、n^{1/(n-1)}を示していただけないでしょうか。
808無駄な拡大再生産
2021/03/13(土) 09:36:47.77ID:HCVbCFDA 438 名前:日高[] 投稿日:2021/02/23(火) 09:01:49.93 ID:RY6Np+kc [4/8]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
439 名前:日高[] 投稿日:2021/02/23(火) 09:02:45.12 ID:RY6Np+kc [5/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
440 名前:日高[] 投稿日:2021/02/23(火) 09:03:38.96 ID:RY6Np+kc [6/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
441 名前:日高[] 投稿日:2021/02/23(火) 09:04:46.50 ID:RY6Np+kc [7/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
442 名前:日高[] 投稿日:2021/02/23(火) 09:32:12.99 ID:RY6Np+kc [8/8]
>433
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)式の解を、2グループに分けます。
Aグループ:yが無理数の(3)の解、例((√31-√3)/2,2√3,(√31+√3)/2)等
Bグループ:yが有理数の(3)の解、例((√(36(√3)-3)-3)/(2√3),3,(√(36(√3)-3)-3)/(2√3)+2)等
例となる、(3)式のnと、n^{1/(n-1)}を示していただけないでしょうか。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
439 名前:日高[] 投稿日:2021/02/23(火) 09:02:45.12 ID:RY6Np+kc [5/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
440 名前:日高[] 投稿日:2021/02/23(火) 09:03:38.96 ID:RY6Np+kc [6/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
441 名前:日高[] 投稿日:2021/02/23(火) 09:04:46.50 ID:RY6Np+kc [7/8]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
442 名前:日高[] 投稿日:2021/02/23(火) 09:32:12.99 ID:RY6Np+kc [8/8]
>433
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)式の解を、2グループに分けます。
Aグループ:yが無理数の(3)の解、例((√31-√3)/2,2√3,(√31+√3)/2)等
Bグループ:yが有理数の(3)の解、例((√(36(√3)-3)-3)/(2√3),3,(√(36(√3)-3)-3)/(2√3)+2)等
例となる、(3)式のnと、n^{1/(n-1)}を示していただけないでしょうか。
2021/03/13(土) 09:37:13.86ID:HCVbCFDA
461 名前:日高[] 投稿日:2021/02/24(水) 07:26:56.43 ID:iNo8gkON [6/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
462 名前:日高[] 投稿日:2021/02/24(水) 07:27:58.07 ID:iNo8gkON [7/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
463 名前:日高[] 投稿日:2021/02/24(水) 07:28:40.22 ID:iNo8gkON [8/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
462 名前:日高[] 投稿日:2021/02/24(水) 07:27:58.07 ID:iNo8gkON [7/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
463 名前:日高[] 投稿日:2021/02/24(水) 07:28:40.22 ID:iNo8gkON [8/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
810・・・・・
2021/03/13(土) 09:38:13.77ID:HCVbCFDA 478 名前:日高[] 投稿日:2021/02/24(水) 13:55:38.48 ID:iNo8gkON [16/33]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
479 名前:日高[] 投稿日:2021/02/24(水) 13:56:56.60 ID:iNo8gkON [17/33]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
480 名前:日高[] 投稿日:2021/02/24(水) 13:57:57.09 ID:iNo8gkON [18/33]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
479 名前:日高[] 投稿日:2021/02/24(水) 13:56:56.60 ID:iNo8gkON [17/33]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
480 名前:日高[] 投稿日:2021/02/24(水) 13:57:57.09 ID:iNo8gkON [18/33]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
811・・・・・
2021/03/13(土) 09:38:48.68ID:HCVbCFDA 481 名前:日高[] 投稿日:2021/02/24(水) 13:58:55.88 ID:iNo8gkON [19/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
482 名前:日高[] 投稿日:2021/02/24(水) 13:59:54.69 ID:iNo8gkON [20/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
483 名前:日高[] 投稿日:2021/02/24(水) 14:00:53.63 ID:iNo8gkON [21/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
490 名前:日高[] 投稿日:2021/02/24(水) 17:08:28.76 ID:iNo8gkON [25/33]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
482 名前:日高[] 投稿日:2021/02/24(水) 13:59:54.69 ID:iNo8gkON [20/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
483 名前:日高[] 投稿日:2021/02/24(水) 14:00:53.63 ID:iNo8gkON [21/33]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
490 名前:日高[] 投稿日:2021/02/24(水) 17:08:28.76 ID:iNo8gkON [25/33]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
812日高
2021/03/13(土) 10:37:41.28ID:0DMZ3jGF >793
よってx^3+y^3=(x+3^{1/(3-1)})^3
このx、y、zは明らかに(3)の解である。
計算は、あっています。
x+3^{1/(3-1)}=(x^3+y^3)^(1/3)の場合は、
x,yは、整数比となります。
よってx^3+y^3=(x+3^{1/(3-1)})^3
このx、y、zは明らかに(3)の解である。
計算は、あっています。
x+3^{1/(3-1)}=(x^3+y^3)^(1/3)の場合は、
x,yは、整数比となります。
813132人目の素数さん
2021/03/13(土) 12:42:27.21ID:ZE6vLBNm >>799
式の意味がわかりませんか?
(k^n+1)*x^n=(x+w)^n・・・(4)'は
>679の
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)について
(an)^{1/(n-1)}=w とおいて,さらにy=kxとおいただけですが?
これを解けば,x,yの値,つまり(4)の解がわかると思いませんか?
式の意味がわかりませんか?
(k^n+1)*x^n=(x+w)^n・・・(4)'は
>679の
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)について
(an)^{1/(n-1)}=w とおいて,さらにy=kxとおいただけですが?
これを解けば,x,yの値,つまり(4)の解がわかると思いませんか?
814日高
2021/03/13(土) 13:26:58.99ID:0DMZ3jGF >794
よって、5行目、(3)の解は、整数比とならない。とは言えません。インチキのウソです。
(3)の解は、整数比となりません。
よって、5行目、(3)の解は、整数比とならない。とは言えません。インチキのウソです。
(3)の解は、整数比となりません。
815日高
2021/03/13(土) 13:34:38.22ID:0DMZ3jGF >795
x=s、y=tは(3)の解ではありません
そのとおりだと、思います。
x=s、y=tは(3)の解ではありません
そのとおりだと、思います。
816日高
2021/03/13(土) 13:42:58.54ID:0DMZ3jGF >797
u=(s^n+t^n)^{1/n}とおくと
s^n+t^n=u^n を満たす
x=rs/(u-s), y=rt/(u-s) は x^n+y^n=(x+r)^n の解であり、x:y=s:tである
u=(s^n+t^n)^{1/n}の場合、そうなりますね。
u=(s^n+t^n)^{1/n}とおくと
s^n+t^n=u^n を満たす
x=rs/(u-s), y=rt/(u-s) は x^n+y^n=(x+r)^n の解であり、x:y=s:tである
u=(s^n+t^n)^{1/n}の場合、そうなりますね。
817日高
2021/03/13(土) 13:51:30.37ID:0DMZ3jGF >798
を使って、最終目標である
「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
はどうやって言えるのですか?
(3) に整数比の無理数解がないならば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
ことになります。
を使って、最終目標である
「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
はどうやって言えるのですか?
(3) に整数比の無理数解がないならば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
ことになります。
818日高
2021/03/13(土) 14:11:55.93ID:0DMZ3jGF >813
これを解けば,x,yの値,つまり(4)の解がわかると思いませんか?
よくわかりません。
これを解けば,x,yの値,つまり(4)の解がわかると思いませんか?
よくわかりません。
819日高
2021/03/13(土) 14:24:54.99ID:0DMZ3jGF 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
820日高
2021/03/13(土) 14:25:54.27ID:0DMZ3jGF (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
821日高
2021/03/13(土) 14:26:44.46ID:0DMZ3jGF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
2021/03/13(土) 14:26:59.21ID:HCVbCFDA
819 名前:日高[] 投稿日:2021/03/13(土) 14:24:54.99 ID:0DMZ3jGF [9/10]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
820 名前:日高[] 投稿日:2021/03/13(土) 14:25:54.27 ID:0DMZ3jGF [10/10]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。よって、(3)の解は、整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}を有理数とする。x,zが有理数のとき、x,yは整数比とならないので、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
820 名前:日高[] 投稿日:2021/03/13(土) 14:25:54.27 ID:0DMZ3jGF [10/10]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
823日高
2021/03/13(土) 14:27:30.16ID:0DMZ3jGF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
824132人目の素数さん
2021/03/13(土) 14:41:09.00ID:ZE6vLBNm >>818
それは(4)に有理数比の解があるかどうかどうやって検討したらいいかわかりません,といっているのと同じです。
>679
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、「x,yは整数比とならない」。
有理数比の解があるか検討できないし,していないならば「x,yは整数比とならない」という結論は導けません。
それは数学の証明でなく,ただの妄想の陳述でしかありません。
それは(4)に有理数比の解があるかどうかどうやって検討したらいいかわかりません,といっているのと同じです。
>679
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(4)の(an)^{1/(n-1)}を無理数とする。yに任意の無理数を代入すると、「x,yは整数比とならない」。
有理数比の解があるか検討できないし,していないならば「x,yは整数比とならない」という結論は導けません。
それは数学の証明でなく,ただの妄想の陳述でしかありません。
825132人目の素数さん
2021/03/13(土) 14:50:33.46ID:KaI2Q7jz >>817
> >798
> を使って、最終目標である
> 「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
> はどうやって言えるのですか?
>
> (3) に整数比の無理数解がないならば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
> ことになります。
「(3) に整数比の無理数解がないならば、 n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない」
ですね。分かりました。
しかし、
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3, y=x のとき
2*x^3=(x+√3)^3…(3)'
となって、これを解くと、※
x = √3*(1 + 2^(1/3) + 2^(2/3))
y = √3*(1 + 2^(1/3) + 2^(2/3))
が、 x:y=1:1 で、整数比の無理数解となります。
(3) に整数比の無理数解はある。
よって、「(3) に整数比の無理数解がない」とは言えない。
よって、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない」とは言えない。
です。
※参考(見るだけでも雰囲気はつかめると思います)
https://ja.wolframalpha.com/input/?i=2*x%5E3%3D%28x%2B%E2%88%9A3%29%5E3+%E3%82%92%E8%A7%A3%E3%81%8F
> >798
> を使って、最終目標である
> 「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
> はどうやって言えるのですか?
>
> (3) に整数比の無理数解がないならば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
> ことになります。
「(3) に整数比の無理数解がないならば、 n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない」
ですね。分かりました。
しかし、
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3, y=x のとき
2*x^3=(x+√3)^3…(3)'
となって、これを解くと、※
x = √3*(1 + 2^(1/3) + 2^(2/3))
y = √3*(1 + 2^(1/3) + 2^(2/3))
が、 x:y=1:1 で、整数比の無理数解となります。
(3) に整数比の無理数解はある。
よって、「(3) に整数比の無理数解がない」とは言えない。
よって、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない」とは言えない。
です。
※参考(見るだけでも雰囲気はつかめると思います)
https://ja.wolframalpha.com/input/?i=2*x%5E3%3D%28x%2B%E2%88%9A3%29%5E3+%E3%82%92%E8%A7%A3%E3%81%8F
826132人目の素数さん
2021/03/13(土) 15:09:53.45ID:R5sxoR59 >>817
> (3) に整数比の無理数解がないならば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
> ことになります。
日高君は「ならば」と「かつ」の区別がついていないんだったよね。
(3) に整数比の無理数解がなく、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
と混同していませんか?
> (3) に整数比の無理数解がないならば、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
> ことになります。
日高君は「ならば」と「かつ」の区別がついていないんだったよね。
(3) に整数比の無理数解がなく、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
と混同していませんか?
827132人目の素数さん
2021/03/13(土) 15:11:59.12ID:HCVbCFDA 821 名前:日高[] 投稿日:2021/03/13(土) 14:26:44.46 ID:0DMZ3jGF [11/12]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
823 名前:日高[] 投稿日:2021/03/13(土) 14:27:30.16 ID:0DMZ3jGF [12/12]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
823 名前:日高[] 投稿日:2021/03/13(土) 14:27:30.16 ID:0DMZ3jGF [12/12]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
828日高
2021/03/13(土) 15:47:41.38ID:0DMZ3jGF 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
よって、(4)の解は整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
よって、(4)の解は整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
829日高
2021/03/13(土) 16:45:43.05ID:0DMZ3jGF >825
x:y=1:1 で、整数比の無理数解となります。
この場合は、x+√3=(x^3+x^3)^(1/3)の場合となります。
x:y=1:1 で、整数比の無理数解となります。
この場合は、x+√3=(x^3+x^3)^(1/3)の場合となります。
830日高
2021/03/13(土) 17:52:26.39ID:0DMZ3jGF >826
(3) に整数比の無理数解がなく、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
と混同していませんか?
同じと思います。
(3) に整数比の無理数解がなく、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
と混同していませんか?
同じと思います。
831日高
2021/03/13(土) 17:56:56.45ID:0DMZ3jGF >824
有理数比の解があるか検討できないし,していないならば「x,yは整数比とならない」という結論は導けません
「x,yは整数比とならない」という結論は(3)はyが有理数のとき、xは無理数となる。
から、導きます。
有理数比の解があるか検討できないし,していないならば「x,yは整数比とならない」という結論は導けません
「x,yは整数比とならない」という結論は(3)はyが有理数のとき、xは無理数となる。
から、導きます。
832日高
2021/03/13(土) 18:18:35.10ID:0DMZ3jGF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
833日高
2021/03/13(土) 18:19:18.83ID:0DMZ3jGF 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/13(土) 18:46:32.31ID:HCVbCFDA
828 名前:日高[] 投稿日:2021/03/13(土) 15:47:41.38 ID:0DMZ3jGF [13/18]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
よって、(4)の解は整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
832 名前:日高[] 投稿日:2021/03/13(土) 18:18:35.10 ID:0DMZ3jGF [17/18]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
833 名前:日高[] 投稿日:2021/03/13(土) 18:19:18.83 ID:0DMZ3jGF [18/18]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
よって、(4)の解は整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
832 名前:日高[] 投稿日:2021/03/13(土) 18:18:35.10 ID:0DMZ3jGF [17/18]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
833 名前:日高[] 投稿日:2021/03/13(土) 18:19:18.83 ID:0DMZ3jGF [18/18]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
835132人目の素数さん
2021/03/13(土) 18:46:34.57ID:KaI2Q7jz >>829
> >825
> x:y=1:1 で、整数比の無理数解となります。
>
> この場合は、x+√3=(x^3+x^3)^(1/3)の場合となります。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
は
x+√3=(x^3+x^3)^(1/3)
を含むのではないですか?
「x^n+y^n=(x+n^{1/(n-1)})^n…(3)」の特殊な場合が「x+√3=(x^3+x^3)^(1/3)」です。
「x+√3=(x^3+x^3)^(1/3)」に整数比の無理数解があれば、
「x^n+y^n=(x+n^{1/(n-1)})^n…(3)」にも整数比の無理数解があります。
> >825
> x:y=1:1 で、整数比の無理数解となります。
>
> この場合は、x+√3=(x^3+x^3)^(1/3)の場合となります。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
は
x+√3=(x^3+x^3)^(1/3)
を含むのではないですか?
「x^n+y^n=(x+n^{1/(n-1)})^n…(3)」の特殊な場合が「x+√3=(x^3+x^3)^(1/3)」です。
「x+√3=(x^3+x^3)^(1/3)」に整数比の無理数解があれば、
「x^n+y^n=(x+n^{1/(n-1)})^n…(3)」にも整数比の無理数解があります。
836これを見よ!
2021/03/13(土) 18:47:04.53ID:HCVbCFDA 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
837これでもまだ
2021/03/13(土) 18:47:30.60ID:HCVbCFDA 74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
838レスを続けるのか?
2021/03/13(土) 18:48:13.51ID:HCVbCFDA 95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
95 名前:日高[] 投稿日:2021/03/05(金) 09:59:54.35 ID:YKio0ytF [6/6]
>76
結局のところ、恣意的に値を選んでるだけだということに気がついていないらしい
n=2の場合
r=2とr=xの場合がありますが、
恣意的にr=2とします。
2021/03/13(土) 18:49:14.66ID:HCVbCFDA
515 名前:日高[] 投稿日:2021/02/24(水) 20:07:20.91 ID:iNo8gkON [36/43]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
516 名前:日高[] 投稿日:2021/02/24(水) 20:08:21.91 ID:iNo8gkON [37/43]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
517 名前:日高[] 投稿日:2021/02/24(水) 20:09:10.13 ID:iNo8gkON [38/43]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
518 名前:日高[] 投稿日:2021/02/24(水) 20:10:08.10 ID:iNo8gkON [39/43]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
519 名前:日高[] 投稿日:2021/02/24(水) 20:11:01.08 ID:iNo8gkON [40/43]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
516 名前:日高[] 投稿日:2021/02/24(水) 20:08:21.91 ID:iNo8gkON [37/43]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
517 名前:日高[] 投稿日:2021/02/24(水) 20:09:10.13 ID:iNo8gkON [38/43]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
518 名前:日高[] 投稿日:2021/02/24(水) 20:10:08.10 ID:iNo8gkON [39/43]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
519 名前:日高[] 投稿日:2021/02/24(水) 20:11:01.08 ID:iNo8gkON [40/43]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
840正気の沙汰ではない
2021/03/13(土) 18:49:55.14ID:HCVbCFDA 530 名前:日高[] 投稿日:2021/02/25(木) 05:53:02.10 ID:t6sJeZsx [1/38]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
531 名前:日高[] 投稿日:2021/02/25(木) 05:54:19.01 ID:t6sJeZsx [2/38]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
531 名前:日高[] 投稿日:2021/02/25(木) 05:54:19.01 ID:t6sJeZsx [2/38]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
841いつまでたっても
2021/03/13(土) 18:50:43.52ID:HCVbCFDA 545 名前:日高[] 投稿日:2021/02/25(木) 07:58:10.22 ID:t6sJeZsx [7/12]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
546 名前:日高[] 投稿日:2021/02/25(木) 07:59:11.06 ID:t6sJeZsx [8/12]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
547 名前:日高[] 投稿日:2021/02/25(木) 08:00:27.56 ID:t6sJeZsx [9/12]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
546 名前:日高[] 投稿日:2021/02/25(木) 07:59:11.06 ID:t6sJeZsx [8/12]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
547 名前:日高[] 投稿日:2021/02/25(木) 08:00:27.56 ID:t6sJeZsx [9/12]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
842同じことの繰り返し
2021/03/13(土) 18:51:08.94ID:HCVbCFDA 548 名前:日高[] 投稿日:2021/02/25(木) 08:01:44.64 ID:t6sJeZsx [10/12]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
549 名前:日高[] 投稿日:2021/02/25(木) 08:02:21.49 ID:t6sJeZsx [11/12]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
550 名前:日高[] 投稿日:2021/02/25(木) 08:03:06.70 ID:t6sJeZsx [12/12]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
549 名前:日高[] 投稿日:2021/02/25(木) 08:02:21.49 ID:t6sJeZsx [11/12]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
550 名前:日高[] 投稿日:2021/02/25(木) 08:03:06.70 ID:t6sJeZsx [12/12]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
843エンドレスループ
2021/03/13(土) 18:51:47.10ID:HCVbCFDA 558 名前:日高[] 投稿日:2021/02/25(木) 08:52:01.33 ID:t6sJeZsx [14/38]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
559 名前:日高[] 投稿日:2021/02/25(木) 08:53:00.59 ID:t6sJeZsx [15/38]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
560 名前:日高[] 投稿日:2021/02/25(木) 08:53:54.00 ID:t6sJeZsx [16/38]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
559 名前:日高[] 投稿日:2021/02/25(木) 08:53:00.59 ID:t6sJeZsx [15/38]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
560 名前:日高[] 投稿日:2021/02/25(木) 08:53:54.00 ID:t6sJeZsx [16/38]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
844エンドレスループ
2021/03/13(土) 18:52:21.37ID:HCVbCFDA 561 名前:日高[] 投稿日:2021/02/25(木) 08:54:34.68 ID:t6sJeZsx [17/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
562 名前:日高[] 投稿日:2021/02/25(木) 08:55:26.57 ID:t6sJeZsx [18/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
563 名前:日高[] 投稿日:2021/02/25(木) 08:56:09.41 ID:t6sJeZsx [19/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
568 名前:日高[] 投稿日:2021/02/25(木) 13:21:06.06 ID:t6sJeZsx [21/38]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
562 名前:日高[] 投稿日:2021/02/25(木) 08:55:26.57 ID:t6sJeZsx [18/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
563 名前:日高[] 投稿日:2021/02/25(木) 08:56:09.41 ID:t6sJeZsx [19/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
568 名前:日高[] 投稿日:2021/02/25(木) 13:21:06.06 ID:t6sJeZsx [21/38]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
845エンドレスループ
2021/03/13(土) 18:52:58.77ID:HCVbCFDA 569 名前:日高[] 投稿日:2021/02/25(木) 13:21:52.78 ID:t6sJeZsx [22/38]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
570 名前:日高[] 投稿日:2021/02/25(木) 13:22:35.39 ID:t6sJeZsx [23/38]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
571 名前:日高[] 投稿日:2021/02/25(木) 13:23:16.04 ID:t6sJeZsx [24/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
570 名前:日高[] 投稿日:2021/02/25(木) 13:22:35.39 ID:t6sJeZsx [23/38]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
571 名前:日高[] 投稿日:2021/02/25(木) 13:23:16.04 ID:t6sJeZsx [24/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
846エンドレスループ
2021/03/13(土) 18:53:23.21ID:HCVbCFDA 572 名前:日高[] 投稿日:2021/02/25(木) 13:23:54.18 ID:t6sJeZsx [25/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
573 名前:日高[] 投稿日:2021/02/25(木) 13:24:42.05 ID:t6sJeZsx [26/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
574 名前:日高[] 投稿日:2021/02/25(木) 16:18:26.00 ID:t6sJeZsx [27/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
575 名前:日高[] 投稿日:2021/02/25(木) 16:20:50.20 ID:t6sJeZsx [28/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
576 名前:日高[] 投稿日:2021/02/25(木) 16:23:15.98 ID:t6sJeZsx [29/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
573 名前:日高[] 投稿日:2021/02/25(木) 13:24:42.05 ID:t6sJeZsx [26/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
574 名前:日高[] 投稿日:2021/02/25(木) 16:18:26.00 ID:t6sJeZsx [27/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
575 名前:日高[] 投稿日:2021/02/25(木) 16:20:50.20 ID:t6sJeZsx [28/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
576 名前:日高[] 投稿日:2021/02/25(木) 16:23:15.98 ID:t6sJeZsx [29/38]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
847132人目の素数さん
2021/03/13(土) 19:28:19.60ID:LO38Ysxp >>830
> >826
> (3) に整数比の無理数解がなく、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
> と混同していませんか?
>
> 同じと思います。
これで数学やろうなんてとうてい無理。っていうか、知的な議論はすべて無理です。
> >826
> (3) に整数比の無理数解がなく、「n≧3 のとき、 s^n+t^n=u^n…(C) は成立しない。」
> と混同していませんか?
>
> 同じと思います。
これで数学やろうなんてとうてい無理。っていうか、知的な議論はすべて無理です。
848132人目の素数さん
2021/03/13(土) 20:06:28.93ID:SmVjjDla >>828
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 よって、(4)の解は整数比とならない。
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(4)の解は、
AAグループ:Aグループと同じ比の(4)の解
BBグループ:Bグループと同じ比の(4)の解
この2通りで、これですべてです。
5行目ではBグループしか調べていないので、Aグループに整数比の解があるかどうかわかりません。
Aグループに整数比の解があれば、AAグループに整数比の解がある。
Aグループに整数比の解がなければ、AAグループに整数比の解がない。
Aグループに整数比の解があるかどうかわからないので、AAグループに整数比の解があるかどうかわからない。
つまり、(4)の解に整数比の解があるとはいえない。
同時に、(4)の解に整数比の解がないとはいえない。
よって、6行目 (4)の解は整数比とならない。はインチキのウソです。
当然、6行目のインチキのウソを使っている>>820も、インチキのウソです。
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 よって、(4)の解は整数比とならない。
(3)の解は、
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(4)の解は、
AAグループ:Aグループと同じ比の(4)の解
BBグループ:Bグループと同じ比の(4)の解
この2通りで、これですべてです。
5行目ではBグループしか調べていないので、Aグループに整数比の解があるかどうかわかりません。
Aグループに整数比の解があれば、AAグループに整数比の解がある。
Aグループに整数比の解がなければ、AAグループに整数比の解がない。
Aグループに整数比の解があるかどうかわからないので、AAグループに整数比の解があるかどうかわからない。
つまり、(4)の解に整数比の解があるとはいえない。
同時に、(4)の解に整数比の解がないとはいえない。
よって、6行目 (4)の解は整数比とならない。はインチキのウソです。
当然、6行目のインチキのウソを使っている>>820も、インチキのウソです。
849132人目の素数さん
2021/03/13(土) 20:15:47.88ID:SmVjjDla たとえばn=2のときなら
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
(3)の解は、
AAグループ:Aグループと同じ比の(3)の解
BBグループ:Bグループと同じ比の(3)の解
この2通りで、これですべてです。
Bグループには整数比の解がない。これだけでは、Aグループに整数比の解があるかどうかわかりません。
Aグループに整数比の解があれば、AAグループに整数比の解がある。
Aグループに整数比の解がなければ、AAグループに整数比の解がない。
つまり、Aグループを調べなければ、(5)の解に整数比の解がないとは言えない。
Aグループを調べるまでは、(5)の解を調べたことにならない。
(5)の解を調べたことにならないので、(3)の解を調べたことにならない。
Bグループに整数比の解がないことだけでは、(3)に整数比の解があるともないとも言えません。
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
(3)の解は、
AAグループ:Aグループと同じ比の(3)の解
BBグループ:Bグループと同じ比の(3)の解
この2通りで、これですべてです。
Bグループには整数比の解がない。これだけでは、Aグループに整数比の解があるかどうかわかりません。
Aグループに整数比の解があれば、AAグループに整数比の解がある。
Aグループに整数比の解がなければ、AAグループに整数比の解がない。
つまり、Aグループを調べなければ、(5)の解に整数比の解がないとは言えない。
Aグループを調べるまでは、(5)の解を調べたことにならない。
(5)の解を調べたことにならないので、(3)の解を調べたことにならない。
Bグループに整数比の解がないことだけでは、(3)に整数比の解があるともないとも言えません。
850132人目の素数さん
2021/03/13(土) 20:23:21.67ID:SmVjjDla >>819
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2xとおく、
左辺
x^3+y^3=9x^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=1:2
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(1/27)(3^(1/2))+(1/27)(3^(1/2))(2^(2/3))(7^(1/3))+(2/27)(3^(1/2))(2^(1/3))(7^(2/3))、y=3xと置く
左辺
x^3+y^3=28x^3=(3052/729)(3^(1/2))+(532/729)(3^(1/2))(2^(2/3))(7^(1/3))+(560/729)(3^(1/2))(2^(1/3))(7^(2/3))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=3052/(243 sqrt(3)) + (532 2^(2/3) 7^(1/3))/(243 sqrt(3)) + (560 2^(1/3) 7^(2/3))/(243 sqrt(3))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=1:3
n=3、x=(1/64)(3^(1/2))+(1/64)(3^(1/2))(65^(1/3))+(1/64)(3^(1/2))(65^(2/3))、y=4xと置く
左辺
x^3+y^3=65x^3=(912795/262144)(3^(1/2))+(76635/262144)(3^(1/2))(65^(1/3))+(39195/262144)(3^(1/2))(65^(2/3))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(912795/262144)(3^(1/2))+(76635/262144)(3^(1/2))(65^(1/3))+(39195/262144)(3^(1/2))(65^(2/3))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=1:4
n=3、x=(8/27)(3^(1/2))+(4/27)(3^(1/2))(35^(1/3))+(2/27)(3^(1/2))(35^(2/3))、y=3x/2と置く
左辺
x^3+y^3=65x^3=(912795/262144)(3^(1/2))+(76635/262144)(3^(1/2))(65^(1/3))+(39195/262144)(3^(1/2))(65^(2/3))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(912795/262144)(3^(1/2))+(76635/262144)(3^(1/2))(65^(1/3))+(39195/262144)(3^(1/2))(65^(2/3))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=1:4
このように、(3)のx、yが整数比となる(3)の解はいくらでもあります。
その中に、x,y,zが整数比になるものがない、という証拠が、ありません。
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(3/8)(3^(1/6))+(1/8)(3^(1/2))+(3/8)(3^(5/6))、y=2xとおく、
左辺
x^3+y^3=9x^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(4617/512)(3^(1/6))+(3915/512)(3^(1/2))+(2673/512)(3^(5/6))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=1:2
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
n=3、x=(1/27)(3^(1/2))+(1/27)(3^(1/2))(2^(2/3))(7^(1/3))+(2/27)(3^(1/2))(2^(1/3))(7^(2/3))、y=3xと置く
左辺
x^3+y^3=28x^3=(3052/729)(3^(1/2))+(532/729)(3^(1/2))(2^(2/3))(7^(1/3))+(560/729)(3^(1/2))(2^(1/3))(7^(2/3))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=3052/(243 sqrt(3)) + (532 2^(2/3) 7^(1/3))/(243 sqrt(3)) + (560 2^(1/3) 7^(2/3))/(243 sqrt(3))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=1:3
n=3、x=(1/64)(3^(1/2))+(1/64)(3^(1/2))(65^(1/3))+(1/64)(3^(1/2))(65^(2/3))、y=4xと置く
左辺
x^3+y^3=65x^3=(912795/262144)(3^(1/2))+(76635/262144)(3^(1/2))(65^(1/3))+(39195/262144)(3^(1/2))(65^(2/3))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(912795/262144)(3^(1/2))+(76635/262144)(3^(1/2))(65^(1/3))+(39195/262144)(3^(1/2))(65^(2/3))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=1:4
n=3、x=(8/27)(3^(1/2))+(4/27)(3^(1/2))(35^(1/3))+(2/27)(3^(1/2))(35^(2/3))、y=3x/2と置く
左辺
x^3+y^3=65x^3=(912795/262144)(3^(1/2))+(76635/262144)(3^(1/2))(65^(1/3))+(39195/262144)(3^(1/2))(65^(2/3))
右辺
(x+3^{1/(3-1)})^3=(x+3^(1/2))^3=(912795/262144)(3^(1/2))+(76635/262144)(3^(1/2))(65^(1/3))+(39195/262144)(3^(1/2))(65^(2/3))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=1:4
このように、(3)のx、yが整数比となる(3)の解はいくらでもあります。
その中に、x,y,zが整数比になるものがない、という証拠が、ありません。
851132人目の素数さん
2021/03/13(土) 20:32:41.96ID:SmVjjDla >>850修正
2つ目の例
x:y=1:3の右辺は、分母を有利化してないだけで、左辺と同じです。
4つ目の例のところ、2行目以降が3つ目の例のままでした。正しくは
n=3、x=(8/27)(3^(1/2))+(4/27)(3^(1/2))(35^(1/3))+(2/27)(3^(1/2))(35^(2/3))、y=3x/2と置く
左辺
x^3+y^3=(35/8)x^3=(12635/729)(3^(1/2))+(3640/729)(3^(1/2))(35^(1/3))+(1190/729)(3^(1/2))(35^(2/3))
右辺
(x+3^{1/(3-1)})^3=(12635/729)(3^(1/2))+(3640/729)(3^(1/2))(35^(1/3))+(1190/729)(3^(1/2))(35^(2/3))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=2:3
2つ目の例
x:y=1:3の右辺は、分母を有利化してないだけで、左辺と同じです。
4つ目の例のところ、2行目以降が3つ目の例のままでした。正しくは
n=3、x=(8/27)(3^(1/2))+(4/27)(3^(1/2))(35^(1/3))+(2/27)(3^(1/2))(35^(2/3))、y=3x/2と置く
左辺
x^3+y^3=(35/8)x^3=(12635/729)(3^(1/2))+(3640/729)(3^(1/2))(35^(1/3))+(1190/729)(3^(1/2))(35^(2/3))
右辺
(x+3^{1/(3-1)})^3=(12635/729)(3^(1/2))+(3640/729)(3^(1/2))(35^(1/3))+(1190/729)(3^(1/2))(35^(2/3))
よってこのx、yはx^n+y^n=(x+n^{1/(n-1)})^n…(3)を満たす
x:y=2:3
852132人目の素数さん
2021/03/13(土) 21:56:44.77ID:qOES19rP 日高さんに尋ねてみよう。
「x>2ならばx>1」と「x>2かつx>1」は同じですか?
「x>2ならばx>1」と「x>2かつx>1」は同じですか?
853日高
2021/03/14(日) 06:57:29.42ID:dHCCEzTf (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
854日高
2021/03/14(日) 07:14:39.41ID:dHCCEzTf 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
855・・・・・・
2021/03/14(日) 07:49:53.34ID:yaJ2WFvt 853 名前:日高[] 投稿日:2021/03/14(日) 06:57:29.42 ID:dHCCEzTf [1/2]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
854 名前:日高[] 投稿日:2021/03/14(日) 07:14:39.41 ID:dHCCEzTf [2/2]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
854 名前:日高[] 投稿日:2021/03/14(日) 07:14:39.41 ID:dHCCEzTf [2/2]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
856日高
2021/03/14(日) 08:21:45.25ID:dHCCEzTf >835
「x^n+y^n=(x+n^{1/(n-1)})^n…(3)」にも整数比の無理数解があります。
(3)のx,y,zが整数比となる無理数解が、あるでしょうか?
「x^n+y^n=(x+n^{1/(n-1)})^n…(3)」にも整数比の無理数解があります。
(3)のx,y,zが整数比となる無理数解が、あるでしょうか?
857日高
2021/03/14(日) 08:27:16.14ID:dHCCEzTf 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
858132人目の素数さん
2021/03/14(日) 08:28:21.69ID:NITBosZW >>856
> >835
> 「x^n+y^n=(x+n^{1/(n-1)})^n…(3)」にも整数比の無理数解があります。
>
> (3)のx,y,zが整数比となる無理数解が、あるでしょうか?
あー、 z まで言われると困っちゃいますね。フェルマーに反例は無いのですから。
では、日高氏のほうから、「(3) に整数比の無理数解がない」事の証明をお願いします。
> >835
> 「x^n+y^n=(x+n^{1/(n-1)})^n…(3)」にも整数比の無理数解があります。
>
> (3)のx,y,zが整数比となる無理数解が、あるでしょうか?
あー、 z まで言われると困っちゃいますね。フェルマーに反例は無いのですから。
では、日高氏のほうから、「(3) に整数比の無理数解がない」事の証明をお願いします。
859日高
2021/03/14(日) 08:34:35.41ID:dHCCEzTf >847
これで数学やろうなんてとうてい無理。っていうか、知的な議論はすべて無理です。
どうしてでしょうか?
これで数学やろうなんてとうてい無理。っていうか、知的な議論はすべて無理です。
どうしてでしょうか?
860日高
2021/03/14(日) 08:37:38.01ID:dHCCEzTf >848
よって、6行目 (4)の解は整数比とならない。はインチキのウソです。
(4)の解x,y,zは整数比とならない。は、ウソでしょうか?
よって、6行目 (4)の解は整数比とならない。はインチキのウソです。
(4)の解x,y,zは整数比とならない。は、ウソでしょうか?
861日高
2021/03/14(日) 08:46:27.30ID:dHCCEzTf >849
Bグループに整数比の解がないことだけでは、(3)に整数比の解があるともないとも言えません。
Bグループに整数比の解x,y,zがないことが、解れば、Aグループにも、整数比の解x,y,zがないことが、
解ります。
Bグループに整数比の解がないことだけでは、(3)に整数比の解があるともないとも言えません。
Bグループに整数比の解x,y,zがないことが、解れば、Aグループにも、整数比の解x,y,zがないことが、
解ります。
862日高
2021/03/14(日) 08:53:49.10ID:dHCCEzTf >850
このように、(3)のx、yが整数比となる(3)の解はいくらでもあります。
その中に、x,y,zが整数比になるものがない、という証拠が、ありません。
(3)のx、y、zが整数比となる(3)の解があるかどうかは、不明です。
ただし、x、y、zが整数比となるx,yが有理数の解は、ありません。
このように、(3)のx、yが整数比となる(3)の解はいくらでもあります。
その中に、x,y,zが整数比になるものがない、という証拠が、ありません。
(3)のx、y、zが整数比となる(3)の解があるかどうかは、不明です。
ただし、x、y、zが整数比となるx,yが有理数の解は、ありません。
863日高
2021/03/14(日) 08:57:25.36ID:dHCCEzTf >852
「x>2ならばx>1」と「x>2かつx>1」は同じですか?
この場合の、「ならば」と、「かつ」の意味を教えてください。
「x>2ならばx>1」と「x>2かつx>1」は同じですか?
この場合の、「ならば」と、「かつ」の意味を教えてください。
864日高
2021/03/14(日) 08:59:44.20ID:dHCCEzTf 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
865日高
2021/03/14(日) 09:02:21.48ID:dHCCEzTf (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
866日高
2021/03/14(日) 09:04:19.01ID:dHCCEzTf >858
では、日高氏のほうから、「(3) に整数比の無理数解がない」事の証明をお願いします。
864,865を見て下さい。
では、日高氏のほうから、「(3) に整数比の無理数解がない」事の証明をお願いします。
864,865を見て下さい。
867132人目の素数さん
2021/03/14(日) 09:05:19.78ID:6pK6zd3W >>861
> Bグループに整数比の解x,y,zがないことが、解れば、Aグループにも、整数比の解x,y,zがないことが、
> 解ります。
では、「Bグループに整数比の解x,y,zがない」を前提として
「Aグループに整数比の解x,y,zがない」を導出してください
できるものなら
> Bグループに整数比の解x,y,zがないことが、解れば、Aグループにも、整数比の解x,y,zがないことが、
> 解ります。
では、「Bグループに整数比の解x,y,zがない」を前提として
「Aグループに整数比の解x,y,zがない」を導出してください
できるものなら
868日高
2021/03/14(日) 09:05:23.28ID:dHCCEzTf 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
869日高
2021/03/14(日) 09:06:22.73ID:dHCCEzTf 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
870日高
2021/03/14(日) 09:11:53.97ID:dHCCEzTf >867
では、「Bグループに整数比の解x,y,zがない」を前提として
「Aグループに整数比の解x,y,zがない」を導出してください
x^n+y^n=z^nが存在しないならば、
(xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
では、「Bグループに整数比の解x,y,zがない」を前提として
「Aグループに整数比の解x,y,zがない」を導出してください
x^n+y^n=z^nが存在しないならば、
(xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
871132人目の素数さん
2021/03/14(日) 09:14:15.20ID:NITBosZW >>866
> >858
> では、日高氏のほうから、「(3) に整数比の無理数解がない」事の証明をお願いします。
>
> 864,865を見て下さい。
すみませんが、証明全体(864とか)を指すのではなく、具体的な事由・根拠を書いて下さい。
そうでないと議論がやりにくいです。
「(3) に整数比の無理数解がない」事の説明をお願いします。
> >858
> では、日高氏のほうから、「(3) に整数比の無理数解がない」事の証明をお願いします。
>
> 864,865を見て下さい。
すみませんが、証明全体(864とか)を指すのではなく、具体的な事由・根拠を書いて下さい。
そうでないと議論がやりにくいです。
「(3) に整数比の無理数解がない」事の説明をお願いします。
872日高
2021/03/14(日) 09:50:36.97ID:dHCCEzTf 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zは整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zは整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
873日高
2021/03/14(日) 10:04:24.93ID:dHCCEzTf >871
「(3) に整数比の無理数解がない」事の説明をお願いします。
872を見てください。
「(3) の整数比の無理数解」部分を、削除します。
865で、(3)のx,yが無理数の場合を、見てください。
「(3) に整数比の無理数解がない」事の説明をお願いします。
872を見てください。
「(3) の整数比の無理数解」部分を、削除します。
865で、(3)のx,yが無理数の場合を、見てください。
874日高
2021/03/14(日) 10:11:56.79ID:dHCCEzTf 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。よって、解x,y,zは有理数とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。よって、解x,y,zは有理数とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
875日高
2021/03/14(日) 10:19:29.67ID:dHCCEzTf 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
876132人目の素数さん
2021/03/14(日) 10:19:56.43ID:NITBosZW >>873
> >871
> 「(3) に整数比の無理数解がない」事の説明をお願いします。
>
> 872を見てください。
> 「(3) の整数比の無理数解」部分を、削除します。
> 865で、(3)のx,yが無理数の場合を、見てください。
> 具体的な事由・根拠を書いて下さい。
と言ったのに聞いてくれないのですね。まあいいです。
>>865
> (3)のx,yが無理数の場合は、x=sw、y=twとおく。
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
> 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
> n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
> (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
> (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
> (4)はx,y,zが有理数の場合は、成立しないので、(C)および、
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
> (4)はx,y,zが有理数の場合は、成立しないので、
については、どういう理由で言えるのでしょうか。
> >871
> 「(3) に整数比の無理数解がない」事の説明をお願いします。
>
> 872を見てください。
> 「(3) の整数比の無理数解」部分を、削除します。
> 865で、(3)のx,yが無理数の場合を、見てください。
> 具体的な事由・根拠を書いて下さい。
と言ったのに聞いてくれないのですね。まあいいです。
>>865
> (3)のx,yが無理数の場合は、x=sw、y=twとおく。
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
> 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
> n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
> (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
> (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
> (C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
> (4)はx,y,zが有理数の場合は、成立しないので、(C)および、
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
> (4)はx,y,zが有理数の場合は、成立しないので、
については、どういう理由で言えるのでしょうか。
877日高
2021/03/14(日) 10:23:34.88ID:dHCCEzTf (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
878日高
2021/03/14(日) 10:25:56.99ID:dHCCEzTf >876
> (4)はx,y,zが有理数の場合は、成立しないので、
については、どういう理由で言えるのでしょうか。
875を見てください。
> (4)はx,y,zが有理数の場合は、成立しないので、
については、どういう理由で言えるのでしょうか。
875を見てください。
879132人目の素数さん
2021/03/14(日) 10:36:18.63ID:NITBosZW880132人目の素数さん
2021/03/14(日) 10:56:48.57ID:tZJKmmO6 >>870
> >867
>
> では、「Bグループに整数比の解x,y,zがない」を前提として
> 「Aグループに整数比の解x,y,zがない」を導出してください
>
> x^n+y^n=z^nが存在しないならば、
> (xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
それで導出したつもりかね?
数学としてはまったく意味をなしてない記述だな
「存在しない」のははてさて、一体なんなんですかね
いちいち推測して補ったりはしてやらんぞ
> >867
>
> では、「Bグループに整数比の解x,y,zがない」を前提として
> 「Aグループに整数比の解x,y,zがない」を導出してください
>
> x^n+y^n=z^nが存在しないならば、
> (xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
それで導出したつもりかね?
数学としてはまったく意味をなしてない記述だな
「存在しない」のははてさて、一体なんなんですかね
いちいち推測して補ったりはしてやらんぞ
881132人目の素数さん
2021/03/14(日) 11:32:35.66ID:9Pgv9Bi3 >>870
> (3)のx,y,zが整数比となる無理数解が、あるでしょうか?
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 よって、(4)の解は整数比とならない。
(3)のx,y,zが整数比となる無理数解が、あるかもしれないし、ないかもしれません。
証明の1行目からが5行目までで、(3)のx,y,zが整数比となる無理数解が、あるかもしれないので、
つまり、(3)のx,y,zが整数比となる無理数解がないという証拠がこの証明の中にないので、
(3)のx,y,zが整数比となる無理数解がない、はインチキのウソです。証拠もないのにそんなこと言えません。
(3)のx,y,zが整数比となる無理数解がない、はインチキのウソなので、
インチキのウソを証拠にした、06行目 よって、(4)の解は整数比とならない。はインチキのウソです。
他の誰がどんな証明をしていようが、この証明の中でインチキのウソでない証拠がないので、(4)の解は整数比とならない。はインチキのウソです。
> (3)のx,y,zが整数比となる無理数解が、あるでしょうか?
01行目 【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 よって、(4)の解は整数比とならない。
(3)のx,y,zが整数比となる無理数解が、あるかもしれないし、ないかもしれません。
証明の1行目からが5行目までで、(3)のx,y,zが整数比となる無理数解が、あるかもしれないので、
つまり、(3)のx,y,zが整数比となる無理数解がないという証拠がこの証明の中にないので、
(3)のx,y,zが整数比となる無理数解がない、はインチキのウソです。証拠もないのにそんなこと言えません。
(3)のx,y,zが整数比となる無理数解がない、はインチキのウソなので、
インチキのウソを証拠にした、06行目 よって、(4)の解は整数比とならない。はインチキのウソです。
他の誰がどんな証明をしていようが、この証明の中でインチキのウソでない証拠がないので、(4)の解は整数比とならない。はインチキのウソです。
882132人目の素数さん
2021/03/14(日) 11:50:58.81ID:9Pgv9Bi3 >>870
> x^n+y^n=z^nが存在しないならば、
> (xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
x^2+y^2=(x+√3)^2…(5)
(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
x=12、y=5、z=13は(5)の解ではありません。このような(5)の解は存在しません。
w=√3とします。
x=12w、y=5w、z=13wは(5)の解です。このような(5)の解が存在します。
>>870は間違いです。
同様に
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(3)の無理数で整数比の解があるのかないのかわからないので、
想像として、x=sw,y=tw,(s,tは有理数)が(3)の解であるとします。
x=sw,y=tw,(s,tは有理数)が(3)の解であると想像しているときでも、
x=s,y=t,は(3)の解ではありません。このような(3)の解は存在しません。
x=sw,y=tw,(s,tは有理数)が(3)の解であると想像しているのだから、
x=sw,y=twは(3)の解です。このような(3)の解は存在する、と想像しているから。
(5)にx=12,y=5の解が存在しないがx=12w、y=5wの解が存在するのと同じように、
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
> x^n+y^n=z^nが存在しないならば、
> (xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
x^2+y^2=(x+√3)^2…(5)
(5)の解は、
Aグループ:yが無理数の(5)の解
Bグループ:yが有理数の(5)の解
この2通りで、これですべてです。
x=12、y=5、z=13は(5)の解ではありません。このような(5)の解は存在しません。
w=√3とします。
x=12w、y=5w、z=13wは(5)の解です。このような(5)の解が存在します。
>>870は間違いです。
同様に
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
Aグループ:yが無理数の(3)の解
Bグループ:yが有理数の(3)の解
この2通りで、これですべてです。
(3)の無理数で整数比の解があるのかないのかわからないので、
想像として、x=sw,y=tw,(s,tは有理数)が(3)の解であるとします。
x=sw,y=tw,(s,tは有理数)が(3)の解であると想像しているときでも、
x=s,y=t,は(3)の解ではありません。このような(3)の解は存在しません。
x=sw,y=tw,(s,tは有理数)が(3)の解であると想像しているのだから、
x=sw,y=twは(3)の解です。このような(3)の解は存在する、と想像しているから。
(5)にx=12,y=5の解が存在しないがx=12w、y=5wの解が存在するのと同じように、
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
2021/03/14(日) 12:24:16.06ID:yaJ2WFvt
857 名前:日高[] 投稿日:2021/03/14(日) 08:27:16.14 ID:dHCCEzTf [4/21]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
864 名前:日高[] 投稿日:2021/03/14(日) 08:59:44.20 ID:dHCCEzTf [10/21]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
865 名前:日高[] 投稿日:2021/03/14(日) 09:02:21.48 ID:dHCCEzTf [11/21]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
864 名前:日高[] 投稿日:2021/03/14(日) 08:59:44.20 ID:dHCCEzTf [10/21]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
865 名前:日高[] 投稿日:2021/03/14(日) 09:02:21.48 ID:dHCCEzTf [11/21]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
884132人目の素数さん
2021/03/14(日) 12:24:54.92ID:yaJ2WFvt 864 名前:日高[] 投稿日:2021/03/14(日) 08:59:44.20 ID:dHCCEzTf [10/21]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
865 名前:日高[] 投稿日:2021/03/14(日) 09:02:21.48 ID:dHCCEzTf [11/21]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
872 名前:日高[] 投稿日:2021/03/14(日) 09:50:36.97 ID:dHCCEzTf [16/21]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zは整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(3)の解x,y,zは整数比とならない。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zも整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
865 名前:日高[] 投稿日:2021/03/14(日) 09:02:21.48 ID:dHCCEzTf [11/21]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
(4)はx,y,zが有理数の場合は、成立しないので、(C)および、
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
872 名前:日高[] 投稿日:2021/03/14(日) 09:50:36.97 ID:dHCCEzTf [16/21]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。よって、(4)の解x,y,zは整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
885この投稿から
2021/03/14(日) 12:26:19.21ID:yaJ2WFvt 615 名前:日高[] 投稿日:2021/02/26(金) 15:56:14.42 ID:M74qMKvB [9/16]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
616 名前:日高[] 投稿日:2021/02/26(金) 15:57:08.66 ID:M74qMKvB [10/16]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となるので、
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx,y,zが有理数の場合と同じとなるが、(4)はx,y,zが有理数のとき、
成立しないので、(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
616 名前:日高[] 投稿日:2021/02/26(金) 15:57:08.66 ID:M74qMKvB [10/16]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となるので、
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx,y,zが有理数の場合と同じとなるが、(4)はx,y,zが有理数のとき、
成立しないので、(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
2021/03/14(日) 12:26:50.29ID:yaJ2WFvt
617 名前:日高[] 投稿日:2021/02/26(金) 15:58:45.19 ID:M74qMKvB [11/16]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
618 名前:日高[] 投稿日:2021/02/26(金) 15:59:45.32 ID:M74qMKvB [12/16]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
619 名前:日高[] 投稿日:2021/02/26(金) 16:01:57.98 ID:M74qMKvB [13/16]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
620 名前:日高[] 投稿日:2021/02/26(金) 16:02:55.83 ID:M74qMKvB [14/16]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
618 名前:日高[] 投稿日:2021/02/26(金) 15:59:45.32 ID:M74qMKvB [12/16]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
619 名前:日高[] 投稿日:2021/02/26(金) 16:01:57.98 ID:M74qMKvB [13/16]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
620 名前:日高[] 投稿日:2021/02/26(金) 16:02:55.83 ID:M74qMKvB [14/16]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
887無駄無駄無駄無駄
2021/03/14(日) 12:27:45.14ID:yaJ2WFvt 631 名前:日高[] 投稿日:2021/02/26(金) 20:42:14.85 ID:M74qMKvB [18/24]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
632 名前:日高[] 投稿日:2021/02/26(金) 20:44:14.15 ID:M74qMKvB [19/24]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となるので、
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx,y,zが有理数の場合と同じとなるが、(4)はx,y,zが有理数のとき、
成立しないので、(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
633 名前:日高[] 投稿日:2021/02/26(金) 20:44:57.14 ID:M74qMKvB [20/24]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,yは整数比とならないので、(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
632 名前:日高[] 投稿日:2021/02/26(金) 20:44:14.15 ID:M74qMKvB [19/24]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となるので、
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx,y,zが有理数の場合と同じとなるが、(4)はx,y,zが有理数のとき、
成立しないので、(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nも、成立しない。
633 名前:日高[] 投稿日:2021/02/26(金) 20:44:57.14 ID:M74qMKvB [20/24]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
888・・・・・
2021/03/14(日) 12:28:22.60ID:yaJ2WFvt 634 名前:日高[] 投稿日:2021/02/26(金) 20:46:10.67 ID:M74qMKvB [21/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
636 名前:日高[] 投稿日:2021/02/26(金) 20:47:22.37 ID:M74qMKvB [22/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
637 名前:日高[] 投稿日:2021/02/26(金) 20:48:24.13 ID:M74qMKvB [23/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
638 名前:日高[] 投稿日:2021/02/26(金) 20:49:46.19 ID:M74qMKvB [24/24]
>635
> 最初の問題(フェルマーの最終定理)が正しいことが、わかります。
だから君がやっていることは証明じゃないんだってば。
どうしてでしょうか?
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
636 名前:日高[] 投稿日:2021/02/26(金) 20:47:22.37 ID:M74qMKvB [22/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
637 名前:日高[] 投稿日:2021/02/26(金) 20:48:24.13 ID:M74qMKvB [23/24]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
638 名前:日高[] 投稿日:2021/02/26(金) 20:49:46.19 ID:M74qMKvB [24/24]
>635
> 最初の問題(フェルマーの最終定理)が正しいことが、わかります。
だから君がやっていることは証明じゃないんだってば。
どうしてでしょうか?
889新鮮味なし
2021/03/14(日) 12:29:29.15ID:yaJ2WFvt 1 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/02/16(火) 08:50:11.66 ID:3kd34q0c [1/13]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/02/16(火) 08:51:18.72 ID:3kd34q0c [2/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
3 名前:日高[] 投稿日:2021/02/16(火) 08:52:05.36 ID:3kd34q0c [3/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/02/16(火) 08:51:18.72 ID:3kd34q0c [2/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
3 名前:日高[] 投稿日:2021/02/16(火) 08:52:05.36 ID:3kd34q0c [3/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
890132人目の素数さん
2021/03/14(日) 13:57:19.34ID:ZyZDZW5f2021/03/14(日) 14:04:03.46ID:yaJ2WFvt
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
892日高
2021/03/14(日) 15:40:45.65ID:dHCCEzTf893日高
2021/03/14(日) 15:42:30.10ID:dHCCEzTf >880
それで導出したつもりかね?
はい。
それで導出したつもりかね?
はい。
894日高
2021/03/14(日) 15:46:42.58ID:dHCCEzTf >881
他の誰がどんな証明をしていようが、この証明の中でインチキのウソでない証拠がないので、(4)の解は整数比とならない。はインチキのウソです。
875と877を見てください。
他の誰がどんな証明をしていようが、この証明の中でインチキのウソでない証拠がないので、(4)の解は整数比とならない。はインチキのウソです。
875と877を見てください。
895日高
2021/03/14(日) 15:53:26.49ID:dHCCEzTf >882
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
x=s,y=t,z=uの解が存在するならば、x=sw,y=tw,z=uwの解が存在します。
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
x=s,y=t,z=uの解が存在するならば、x=sw,y=tw,z=uwの解が存在します。
896132人目の素数さん
2021/03/14(日) 15:55:16.70ID:uG8HlCBf >>893
> >880
> それで導出したつもりかね?
>
> はい。
そもそもが数学の記述として不正で、まったく導出になってない
数学がまったくできていないので、一から数学やり直すか、でなければ消えろ
> >880
> それで導出したつもりかね?
>
> はい。
そもそもが数学の記述として不正で、まったく導出になってない
数学がまったくできていないので、一から数学やり直すか、でなければ消えろ
897日高
2021/03/14(日) 15:56:09.10ID:dHCCEzTf >890
通常の意味です。回答願います。
わかりません。教えてください。
通常の意味です。回答願います。
わかりません。教えてください。
898132人目の素数さん
2021/03/14(日) 15:56:26.12ID:9Pgv9Bi3 >>894
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 (4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
07行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
08行目 (3)のx,yが無理数の場合は、x=sw、y=twとおく。
09行目 (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
10行目 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
11行目 n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
12行目 (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
13行目 (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
14行目 (4)のx,y,zが有理数とならないので、(C)は成立しない。
(3)のx,y,zが整数比となる無理数解が、あるかもしれないし、ないかもしれません。
証明の1行目からが5行目までで、(3)のx,y,zが整数比となる無理数解が、あるかもしれないので、
つまり、(3)のx,y,zが整数比となる無理数解がないという証拠がこの証明の中にないので、
(3)のx,y,zが整数比となる無理数解がない、はインチキのウソです。証拠もないのにそんなこと言えません。
(3)のx,y,zが整数比となる無理数解がない、はインチキのウソなので、
インチキのウソを証拠にした、06行目 (4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。はインチキのウソです。
06行目がインチキのウソなので、
インチキのウソを証拠にした、14行目 (4)のx,y,zが有理数とならないので、もインチキのウソです。
当然、(C)は成立しない。もインチキのウソです。
他の誰がどんな証明をしていようが、この証明の中でインチキのウソでない証拠がないので、
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。はインチキのウソです。
01行目【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
02行目 (1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
03行目 (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
04行目 (2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
05行目 (3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
06行目 (4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
07行目 ∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
08行目 (3)のx,yが無理数の場合は、x=sw、y=twとおく。
09行目 (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
10行目 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
11行目 n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
12行目 (A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
13行目 (B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
14行目 (4)のx,y,zが有理数とならないので、(C)は成立しない。
(3)のx,y,zが整数比となる無理数解が、あるかもしれないし、ないかもしれません。
証明の1行目からが5行目までで、(3)のx,y,zが整数比となる無理数解が、あるかもしれないので、
つまり、(3)のx,y,zが整数比となる無理数解がないという証拠がこの証明の中にないので、
(3)のx,y,zが整数比となる無理数解がない、はインチキのウソです。証拠もないのにそんなこと言えません。
(3)のx,y,zが整数比となる無理数解がない、はインチキのウソなので、
インチキのウソを証拠にした、06行目 (4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。はインチキのウソです。
06行目がインチキのウソなので、
インチキのウソを証拠にした、14行目 (4)のx,y,zが有理数とならないので、もインチキのウソです。
当然、(C)は成立しない。もインチキのウソです。
他の誰がどんな証明をしていようが、この証明の中でインチキのウソでない証拠がないので、
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。はインチキのウソです。
899132人目の素数さん
2021/03/14(日) 16:00:01.76ID:9Pgv9Bi3 >>895
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
s,t,uが有理数、wが無理数の時、
(3)にx=s,y=t,z=uの害が存在しますが、(3)にx=sw,y=tw,z=uwの解は存在しません。
(5)にx=s,y=t,z=uの解は存在しませんが、(5)にx=sw,y=tw,z=uwの解は存在します。
> x=s,y=t,z=uの解が存在するならば、x=sw,y=tw,z=uwの解が存在します。
は間違っています。
(5)にx=12,y=5の解が存在しないがx=12w、y=5wの解が存在するのと同じように、
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
x^2+y^2=(x+2)^2…(3)
x^2+y^2=(x+√3)^2…(5)
s,t,uが有理数、wが無理数の時、
(3)にx=s,y=t,z=uの害が存在しますが、(3)にx=sw,y=tw,z=uwの解は存在しません。
(5)にx=s,y=t,z=uの解は存在しませんが、(5)にx=sw,y=tw,z=uwの解は存在します。
> x=s,y=t,z=uの解が存在するならば、x=sw,y=tw,z=uwの解が存在します。
は間違っています。
(5)にx=12,y=5の解が存在しないがx=12w、y=5wの解が存在するのと同じように、
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
900日高
2021/03/14(日) 16:00:35.73ID:dHCCEzTf >896
でなければ消えろ
どうしてでしょうか?
でなければ消えろ
どうしてでしょうか?
901132人目の素数さん
2021/03/14(日) 16:01:17.49ID:9Pgv9Bi3 >>899最後2行間違い
x^2+y^2=(x+√3)^2…(5)
(5)にx=12,y=5の解が存在しないがx=12w、y=5wの解が存在するのと同じように、
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
x^2+y^2=(x+√3)^2…(5)
(5)にx=12,y=5の解が存在しないがx=12w、y=5wの解が存在するのと同じように、
x^n+y^n=(x+n^{1/(n-1)})^n…(3)
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
902132人目の素数さん
2021/03/14(日) 16:01:35.55ID:NITBosZW903132人目の素数さん
2021/03/14(日) 16:30:55.27ID:9Pgv9Bi3 >>870
例として、n=2のとき
r=z-x
r{(y/r)^2-1}=a2{x}(1/a)…(2)
x^2+y^2=(x+2)^2…(3)
(2)には2通りの解があります。
r=2の(2)の解
r≠2の(2)の解
r=2のとき、(2)は(3)に変形できます。r=2のときの(2)の解は(3)の解です。
r≠2のとき、(2)は(3)に変形できません。r≠2のときの(2)の解は(3)の解ではありません。
つまり、(2)の解には2通りあります。
r=2のときの(2)の解、つまり(3)の解でもあるもの
r≠2のときの(2)の解、つまり(3)の解ではないもの
x=s,y=t,z=uのとき、r=2であるならば、絶対にx=sw,y=tw,z=uwのとき、r≠2です。
つまりx=s,y=t,z=uが(3)の解ならば、x=sw,y=tw,z=uwは(3)の解ではありません。
x=sw,y=tw,z=uwのとき、r=2であるならば、絶対にx=s,y=t,z=uのとき、r≠2です。
つまりx=sw,y=tw,z=uwが(3)の解ならば、x=s,y=t,z=uは(3)の解ではありません。
例として、n=2のとき
r=z-x
r{(y/r)^2-1}=a2{x}(1/a)…(2)
x^2+y^2=(x+2)^2…(3)
(2)には2通りの解があります。
r=2の(2)の解
r≠2の(2)の解
r=2のとき、(2)は(3)に変形できます。r=2のときの(2)の解は(3)の解です。
r≠2のとき、(2)は(3)に変形できません。r≠2のときの(2)の解は(3)の解ではありません。
つまり、(2)の解には2通りあります。
r=2のときの(2)の解、つまり(3)の解でもあるもの
r≠2のときの(2)の解、つまり(3)の解ではないもの
x=s,y=t,z=uのとき、r=2であるならば、絶対にx=sw,y=tw,z=uwのとき、r≠2です。
つまりx=s,y=t,z=uが(3)の解ならば、x=sw,y=tw,z=uwは(3)の解ではありません。
x=sw,y=tw,z=uwのとき、r=2であるならば、絶対にx=s,y=t,z=uのとき、r≠2です。
つまりx=sw,y=tw,z=uwが(3)の解ならば、x=s,y=t,z=uは(3)の解ではありません。
904132人目の素数さん
2021/03/14(日) 16:40:00.44ID:AONHzGbV >>897
わかったよ。
【メタ定理】日高にとってはすべての命題は真である。
【証明】任意の命題をpとする。「pならばp」は真である。
日高には「pならばq」と「pかつq」との区別がつかない。
よって「pかつq」も真である。よってpは真である。
わかったよ。
【メタ定理】日高にとってはすべての命題は真である。
【証明】任意の命題をpとする。「pならばp」は真である。
日高には「pならばq」と「pかつq」との区別がつかない。
よって「pかつq」も真である。よってpは真である。
905132人目の素数さん
2021/03/14(日) 16:50:56.72ID:gXPw95uR >>875 日高をまねると次が証明できる。
【定理】n=3のとき、x^n+7y^n=z^nは自然数解を持たない。
【証明】x^n+7y^n=z^nを、z=x+rとおいてx^n+7y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){7(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+7y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+7y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
∴n=3のとき、x^n+7y^n=z^nは自然数解を持たない。
しかしn^3+7y^3=z^3は自然数解x=y=1,z=2を持つんだよなあ。
【定理】n=3のとき、x^n+7y^n=z^nは自然数解を持たない。
【証明】x^n+7y^n=z^nを、z=x+rとおいてx^n+7y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){7(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+7y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+7y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
∴n=3のとき、x^n+7y^n=z^nは自然数解を持たない。
しかしn^3+7y^3=z^3は自然数解x=y=1,z=2を持つんだよなあ。
906132人目の素数さん
2021/03/14(日) 18:18:44.97ID:l6OmNXSD907日高
2021/03/14(日) 18:20:53.94ID:dHCCEzTf 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
908日高
2021/03/14(日) 18:22:35.44ID:dHCCEzTf (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
909日高
2021/03/14(日) 18:27:17.23ID:dHCCEzTf 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
910日高
2021/03/14(日) 18:27:58.38ID:dHCCEzTf 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/14(日) 19:03:48.99ID:yaJ2WFvt
907 名前:日高[] 投稿日:2021/03/14(日) 18:20:53.94 ID:dHCCEzTf [28/31]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
908 名前:日高[] 投稿日:2021/03/14(日) 18:22:35.44 ID:dHCCEzTf [29/31]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
909 名前:日高[] 投稿日:2021/03/14(日) 18:27:17.23 ID:dHCCEzTf [30/31]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
910 名前:日高[] 投稿日:2021/03/14(日) 18:27:58.38 ID:dHCCEzTf [31/31]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
908 名前:日高[] 投稿日:2021/03/14(日) 18:22:35.44 ID:dHCCEzTf [29/31]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
909 名前:日高[] 投稿日:2021/03/14(日) 18:27:17.23 ID:dHCCEzTf [30/31]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
910 名前:日高[] 投稿日:2021/03/14(日) 18:27:58.38 ID:dHCCEzTf [31/31]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
912まるで・・・・
2021/03/14(日) 19:04:41.46ID:yaJ2WFvt 1 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 12:23:11.66 ID:FbLTf6OQ [1/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/03/04(木) 12:24:43.66 ID:FbLTf6OQ [2/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
3 名前:日高[] 投稿日:2021/03/04(木) 12:25:44.50 ID:FbLTf6OQ [3/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/03/04(木) 12:24:43.66 ID:FbLTf6OQ [2/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
3 名前:日高[] 投稿日:2021/03/04(木) 12:25:44.50 ID:FbLTf6OQ [3/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)はx^n+y^n=z^nのx,y,zが有理数の場合と同じとなる。
913進歩がない
2021/03/14(日) 19:04:58.32ID:yaJ2WFvt 4 名前:日高[] 投稿日:2021/03/04(木) 12:26:29.65 ID:FbLTf6OQ [4/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
5 名前:日高[] 投稿日:2021/03/04(木) 12:27:13.78 ID:FbLTf6OQ [5/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)(3)(2)(1)の解の比は、同じとなる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
5 名前:日高[] 投稿日:2021/03/04(木) 12:27:13.78 ID:FbLTf6OQ [5/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/14(日) 19:06:07.62ID:yaJ2WFvt
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
2021/03/14(日) 19:06:59.37ID:yaJ2WFvt
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
916132人目の素数さん
2021/03/14(日) 19:23:57.98ID:YYHWtRCh >>900
> そもそもが数学の記述として不正で、まったく導出になってない
こっちには反応しないんだね?
> > x^n+y^n=z^nが存在しないならば、
ここだけだと
「x^n+y^n=z^n」という方程式が存在しないならば、
と読めて、まあ意味不明だよ
>881 の人とかは推測で
> > x^n+y^n=z^n(の解x,y,zで整数比であるもの)が存在しないならば、
くらいに補って読んでくれてるのかな? 親切だねえ
でも、そうやって議論の対象をきちんと書かないと、内容を読者の推測に任せることになってしまうのがまずダメ
そして、本人の頭の中でも別のものをごっちゃにしてしまって、繋がらないロジックを繋げてしまうかもしれない……というか繋げてしまった結果が
> x^n+y^n=z^nが存在しないならば、
> (xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
これで導出できたという思い込みですな
> そもそもが数学の記述として不正で、まったく導出になってない
こっちには反応しないんだね?
> > x^n+y^n=z^nが存在しないならば、
ここだけだと
「x^n+y^n=z^n」という方程式が存在しないならば、
と読めて、まあ意味不明だよ
>881 の人とかは推測で
> > x^n+y^n=z^n(の解x,y,zで整数比であるもの)が存在しないならば、
くらいに補って読んでくれてるのかな? 親切だねえ
でも、そうやって議論の対象をきちんと書かないと、内容を読者の推測に任せることになってしまうのがまずダメ
そして、本人の頭の中でも別のものをごっちゃにしてしまって、繋がらないロジックを繋げてしまうかもしれない……というか繋げてしまった結果が
> x^n+y^n=z^nが存在しないならば、
> (xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
これで導出できたという思い込みですな
917日高
2021/03/15(月) 07:56:35.47ID:JL63Al/K 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
918日高
2021/03/15(月) 07:58:04.88ID:JL63Al/K (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
919日高
2021/03/15(月) 08:02:20.83ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
920日高
2021/03/15(月) 08:03:47.77ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
921日高
2021/03/15(月) 08:40:51.04ID:JL63Al/K >898
(3)のx,y,zが整数比となる無理数解が、あるかもしれないし、ないかもしれません。
14行目 (4)のx,y,zが有理数とならないので、(C)は成立しない。
ので、ありません。
(3)のx,y,zが整数比となる無理数解が、あるかもしれないし、ないかもしれません。
14行目 (4)のx,y,zが有理数とならないので、(C)は成立しない。
ので、ありません。
922日高
2021/03/15(月) 08:50:18.33ID:JL63Al/K >899
> x=s,y=t,z=uの解が存在するならば、x=sw,y=tw,z=uwの解が存在します。
は間違っています。
x=s,y=t,z=uの解が存在するならば、x=sw,y=tw,z=uwの解が存在します。
は、(3)が存在するならば、(5)も存在するという意味です。
> x=s,y=t,z=uの解が存在するならば、x=sw,y=tw,z=uwの解が存在します。
は間違っています。
x=s,y=t,z=uの解が存在するならば、x=sw,y=tw,z=uwの解が存在します。
は、(3)が存在するならば、(5)も存在するという意味です。
923日高
2021/03/15(月) 08:56:11.17ID:JL63Al/K >901
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
x=sw、y=tw、z=uwの解は、(4)にx,y,zの解が存在しないので、
存在しません。
(3)にx=s,y=tの解が存在しないがx=sw、y=twの解が存在する可能性があります。
x=sw、y=tw、z=uwの解は、(4)にx,y,zの解が存在しないので、
存在しません。
924日高
2021/03/15(月) 08:59:28.97ID:JL63Al/K >902
>>877 の
> (4)のx,y,zが有理数とならないので、
については、どういう理由で言えるのでしょうか。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。からです。
>>877 の
> (4)のx,y,zが有理数とならないので、
については、どういう理由で言えるのでしょうか。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。からです。
925日高
2021/03/15(月) 09:06:55.73ID:JL63Al/K >903
つまりx=sw,y=tw,z=uwが(3)の解ならば、x=s,y=t,z=uは(3)の解ではありません。
x=s,y=t,z=uは(3)の解です。
x=sw,y=tw,z=uwは(4)の解です。(a=w)
つまりx=sw,y=tw,z=uwが(3)の解ならば、x=s,y=t,z=uは(3)の解ではありません。
x=s,y=t,z=uは(3)の解です。
x=sw,y=tw,z=uwは(4)の解です。(a=w)
926日高
2021/03/15(月) 09:09:26.78ID:JL63Al/K >904
【メタ定理】日高にとってはすべての命題は真である。
【証明】任意の命題をpとする。「pならばp」は真である。
日高には「pならばq」と「pかつq」との区別がつかない。
よって「pかつq」も真である。よってpは真である。
よく意味がわかりません。
【メタ定理】日高にとってはすべての命題は真である。
【証明】任意の命題をpとする。「pならばp」は真である。
日高には「pならばq」と「pかつq」との区別がつかない。
よって「pかつq」も真である。よってpは真である。
よく意味がわかりません。
927日高
2021/03/15(月) 09:12:50.47ID:JL63Al/K >905
しかしn^3+7y^3=z^3は自然数解x=y=1,z=2を持つんだよなあ。
式の形が、違います。
しかしn^3+7y^3=z^3は自然数解x=y=1,z=2を持つんだよなあ。
式の形が、違います。
928日高
2021/03/15(月) 09:14:54.51ID:JL63Al/K >906
式が,違います。
と返ってくることまでがお約束w
はい。
式が,違います。
と返ってくることまでがお約束w
はい。
2021/03/15(月) 09:15:14.98ID:PnrgeYpZ
917 名前:日高[] 投稿日:2021/03/15(月) 07:56:35.47 ID:JL63Al/K [1/11]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
918 名前:日高[] 投稿日:2021/03/15(月) 07:58:04.88 ID:JL63Al/K [2/11]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
919 名前:日高[] 投稿日:2021/03/15(月) 08:02:20.83 ID:JL63Al/K [3/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
920 名前:日高[] 投稿日:2021/03/15(月) 08:03:47.77 ID:JL63Al/K [4/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
918 名前:日高[] 投稿日:2021/03/15(月) 07:58:04.88 ID:JL63Al/K [2/11]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
919 名前:日高[] 投稿日:2021/03/15(月) 08:02:20.83 ID:JL63Al/K [3/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
920 名前:日高[] 投稿日:2021/03/15(月) 08:03:47.77 ID:JL63Al/K [4/11]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
2021/03/15(月) 09:16:44.33ID:PnrgeYpZ
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
931日高
2021/03/15(月) 09:18:56.20ID:JL63Al/K >916
> x^n+y^n=z^nが存在しないならば、
> (xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
これで導出できたという思い込みですな
(xw)^n+(yw)^n=(zw)^nの、両辺をw^nで割ると、
x^n+y^n=z^nとなります。
> x^n+y^n=z^nが存在しないならば、
> (xw)^n+(yw)^n=(zw)^nも存在しない。(wは無理数)
これで導出できたという思い込みですな
(xw)^n+(yw)^n=(zw)^nの、両辺をw^nで割ると、
x^n+y^n=z^nとなります。
932日高
2021/03/15(月) 09:21:12.75ID:JL63Al/K 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
933日高
2021/03/15(月) 09:22:09.79ID:JL63Al/K (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
934日高
2021/03/15(月) 09:23:04.07ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
935日高
2021/03/15(月) 09:23:49.16ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
936132人目の素数さん
2021/03/15(月) 09:57:00.53ID:PnrgeYpZ 932 名前:日高[] 投稿日:2021/03/15(月) 09:21:12.75 ID:JL63Al/K [14/17]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
933 名前:日高[] 投稿日:2021/03/15(月) 09:22:09.79 ID:JL63Al/K [15/17]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
934 名前:日高[] 投稿日:2021/03/15(月) 09:23:04.07 ID:JL63Al/K [16/17]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
935 名前:日高[] 投稿日:2021/03/15(月) 09:23:49.16 ID:JL63Al/K [17/17]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
933 名前:日高[] 投稿日:2021/03/15(月) 09:22:09.79 ID:JL63Al/K [15/17]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
934 名前:日高[] 投稿日:2021/03/15(月) 09:23:04.07 ID:JL63Al/K [16/17]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
935 名前:日高[] 投稿日:2021/03/15(月) 09:23:49.16 ID:JL63Al/K [17/17]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
937132人目の素数さん
2021/03/15(月) 09:57:31.92ID:PnrgeYpZ 1 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/02/16(火) 08:50:11.66 ID:3kd34q0c [1/13]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/02/16(火) 08:51:18.72 ID:3kd34q0c [2/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
3 名前:日高[] 投稿日:2021/02/16(火) 08:52:05.36 ID:3kd34q0c [3/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
2 名前:日高[] 投稿日:2021/02/16(火) 08:51:18.72 ID:3kd34q0c [2/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
3 名前:日高[] 投稿日:2021/02/16(火) 08:52:05.36 ID:3kd34q0c [3/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
938132人目の素数さん
2021/03/15(月) 09:57:50.96ID:PnrgeYpZ 5 名前:日高[] 投稿日:2021/02/16(火) 10:21:49.36 ID:3kd34q0c [4/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=3を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
6 名前:日高[] 投稿日:2021/02/16(火) 11:07:26.08 ID:3kd34q0c [5/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
7 名前:日高[] 投稿日:2021/02/16(火) 13:37:18.72 ID:3kd34q0c [6/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
8 名前:日高[] 投稿日:2021/02/16(火) 13:51:34.58 ID:3kd34q0c [7/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
9 名前:日高[] 投稿日:2021/02/16(火) 15:21:09.09 ID:3kd34q0c [8/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
10 名前:日高[] 投稿日:2021/02/16(火) 16:00:18.25 ID:3kd34q0c [9/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=9を代入する。
ピタゴラス数x=77、y=36、z=85を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=3を代入する。
ピタゴラス数x=5、y=12、z=13を得る。
6 名前:日高[] 投稿日:2021/02/16(火) 11:07:26.08 ID:3kd34q0c [5/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5を代入する。
ピタゴラス数x=21、y=20、z=29を得る。
7 名前:日高[] 投稿日:2021/02/16(火) 13:37:18.72 ID:3kd34q0c [6/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=6を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
8 名前:日高[] 投稿日:2021/02/16(火) 13:51:34.58 ID:3kd34q0c [7/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=7を代入する。
ピタゴラス数x=45、y=28、z=53を得る。
9 名前:日高[] 投稿日:2021/02/16(火) 15:21:09.09 ID:3kd34q0c [8/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=8を代入する。
ピタゴラス数x=15、y=8、z=17を得る。
10 名前:日高[] 投稿日:2021/02/16(火) 16:00:18.25 ID:3kd34q0c [9/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=9を代入する。
ピタゴラス数x=77、y=36、z=85を得る。
939132人目の素数さん
2021/03/15(月) 09:58:14.76ID:PnrgeYpZ 11 名前:日高[] 投稿日:2021/02/16(火) 17:43:59.74 ID:3kd34q0c [10/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=12、y=5、z=13を得る。
12 名前:日高[] 投稿日:2021/02/16(火) 17:48:33.99 ID:3kd34q0c [11/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=11を代入する。
ピタゴラス数x=117、y=44、z=125を得る。
13 名前:日高[] 投稿日:2021/02/16(火) 17:50:03.83 ID:3kd34q0c [12/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
14 名前:日高[] 投稿日:2021/02/16(火) 17:55:33.89 ID:3kd34q0c [13/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=12を代入する。
ピタゴラス数x=35、y=12、z=37を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=10を代入する。
ピタゴラス数x=12、y=5、z=13を得る。
12 名前:日高[] 投稿日:2021/02/16(火) 17:48:33.99 ID:3kd34q0c [11/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=11を代入する。
ピタゴラス数x=117、y=44、z=125を得る。
13 名前:日高[] 投稿日:2021/02/16(火) 17:50:03.83 ID:3kd34q0c [12/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
14 名前:日高[] 投稿日:2021/02/16(火) 17:55:33.89 ID:3kd34q0c [13/13]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=12を代入する。
ピタゴラス数x=35、y=12、z=37を得る。
940132人目の素数さん
2021/03/15(月) 09:59:23.73ID:PnrgeYpZ 28 名前:日高[] 投稿日:2021/02/17(水) 15:04:22.28 ID:36d0bZQS [6/10]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
35 名前:日高[] 投稿日:2021/02/17(水) 20:21:11.42 ID:36d0bZQS [10/10]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=15を代入する。
ピタゴラス数x=221、y=60、z=229を得る。
38 名前:日高[] 投稿日:2021/02/18(木) 08:38:57.72 ID:gr0yVoXs [2/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
39 名前:日高[] 投稿日:2021/02/18(木) 08:45:27.22 ID:gr0yVoXs [3/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=16を代入する。
ピタゴラス数x=63、y=16、z=65を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
35 名前:日高[] 投稿日:2021/02/17(水) 20:21:11.42 ID:36d0bZQS [10/10]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=15を代入する。
ピタゴラス数x=221、y=60、z=229を得る。
38 名前:日高[] 投稿日:2021/02/18(木) 08:38:57.72 ID:gr0yVoXs [2/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
39 名前:日高[] 投稿日:2021/02/18(木) 08:45:27.22 ID:gr0yVoXs [3/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=16を代入する。
ピタゴラス数x=63、y=16、z=65を得る。
941132人目の素数さん
2021/03/15(月) 10:00:01.78ID:PnrgeYpZ 40 名前:日高[] 投稿日:2021/02/18(木) 08:55:42.11 ID:gr0yVoXs [4/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=17を代入する。
ピタゴラス数x=285、y=68、z=293を得る。
41 名前:日高[] 投稿日:2021/02/18(木) 09:04:13.75 ID:gr0yVoXs [5/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=18を代入する。
ピタゴラス数x=40、y=9、z=41を得る。
47 名前:日高[] 投稿日:2021/02/18(木) 13:41:06.68 ID:gr0yVoXs [8/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=19を代入する。
ピタゴラス数x=357、y=76、z=365を得る。
48 名前:日高[] 投稿日:2021/02/18(木) 13:50:54.56 ID:gr0yVoXs [9/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
49 名前:日高[] 投稿日:2021/02/18(木) 13:53:55.07 ID:gr0yVoXs [10/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=20を代入する。
ピタゴラス数x=99、y=20、z=101を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=17を代入する。
ピタゴラス数x=285、y=68、z=293を得る。
41 名前:日高[] 投稿日:2021/02/18(木) 09:04:13.75 ID:gr0yVoXs [5/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=18を代入する。
ピタゴラス数x=40、y=9、z=41を得る。
47 名前:日高[] 投稿日:2021/02/18(木) 13:41:06.68 ID:gr0yVoXs [8/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=19を代入する。
ピタゴラス数x=357、y=76、z=365を得る。
48 名前:日高[] 投稿日:2021/02/18(木) 13:50:54.56 ID:gr0yVoXs [9/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
49 名前:日高[] 投稿日:2021/02/18(木) 13:53:55.07 ID:gr0yVoXs [10/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=20を代入する。
ピタゴラス数x=99、y=20、z=101を得る。
942132人目の素数さん
2021/03/15(月) 10:01:00.70ID:PnrgeYpZ 52 名前:日高[] 投稿日:2021/02/18(木) 16:19:03.80 ID:gr0yVoXs [12/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=21を代入する。
ピタゴラス数x=437、y=84、z=445を得る。
52 名前:日高[] 投稿日:2021/02/18(木) 16:19:03.80 ID:gr0yVoXs [12/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=21を代入する。
ピタゴラス数x=437、y=84、z=445を得る。
58 名前:日高[] 投稿日:2021/02/18(木) 17:25:58.59 ID:gr0yVoXs [15/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
59 名前:日高[] 投稿日:2021/02/18(木) 17:31:42.04 ID:gr0yVoXs [16/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=23を代入する。
ピタゴラス数x=525、y=92、z=533を得る。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=21を代入する。
ピタゴラス数x=437、y=84、z=445を得る。
52 名前:日高[] 投稿日:2021/02/18(木) 16:19:03.80 ID:gr0yVoXs [12/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=21を代入する。
ピタゴラス数x=437、y=84、z=445を得る。
58 名前:日高[] 投稿日:2021/02/18(木) 17:25:58.59 ID:gr0yVoXs [15/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
59 名前:日高[] 投稿日:2021/02/18(木) 17:31:42.04 ID:gr0yVoXs [16/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=23を代入する。
ピタゴラス数x=525、y=92、z=533を得る。
943132人目の素数さん
2021/03/15(月) 10:01:36.57ID:PnrgeYpZ 60 名前:日高[] 投稿日:2021/02/18(木) 17:49:42.27 ID:gr0yVoXs [17/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=24を代入する。
ピタゴラス数x=143、y=24、z=145を得る。
61 名前:日高[] 投稿日:2021/02/18(木) 19:31:53.38 ID:gr0yVoXs [18/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=25を代入する。
ピタゴラス数x=621、y=100、z=629を得る。
66 名前:日高[] 投稿日:2021/02/19(金) 06:37:38.61 ID:rKZOm/2h [2/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+1)^2…(B)
(B)の解は、(A)の解の1/2となる。
67 名前:日高[] 投稿日:2021/02/19(金) 08:10:44.35 ID:rKZOm/2h [3/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+2)^2…(B)
(B)の解は、(A)の解の2倍となる。
68 名前:日高[] 投稿日:2021/02/19(金) 08:17:32.89 ID:rKZOm/2h [4/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=24を代入する。
ピタゴラス数x=143、y=24、z=145を得る。
61 名前:日高[] 投稿日:2021/02/18(木) 19:31:53.38 ID:gr0yVoXs [18/19]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=25を代入する。
ピタゴラス数x=621、y=100、z=629を得る。
66 名前:日高[] 投稿日:2021/02/19(金) 06:37:38.61 ID:rKZOm/2h [2/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+1)^2…(B)
(B)の解は、(A)の解の1/2となる。
67 名前:日高[] 投稿日:2021/02/19(金) 08:10:44.35 ID:rKZOm/2h [3/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+2)^2…(B)
(B)の解は、(A)の解の2倍となる。
68 名前:日高[] 投稿日:2021/02/19(金) 08:17:32.89 ID:rKZOm/2h [4/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
944132人目の素数さん
2021/03/15(月) 10:02:14.16ID:PnrgeYpZ 69 名前:日高[] 投稿日:2021/02/19(金) 08:24:19.65 ID:rKZOm/2h [5/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+1)^3…(A)
x^3+y^3=(x+2)^3…(B)
(B)の解は、(A)の解の2倍となる。
70 名前:日高[] 投稿日:2021/02/19(金) 08:40:38.17 ID:rKZOm/2h [6/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
74 名前:日高[] 投稿日:2021/02/19(金) 09:12:07.19 ID:rKZOm/2h [7/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2に、y=2を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
75 名前:日高[] 投稿日:2021/02/19(金) 10:15:38.93 ID:rKZOm/2h [8/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(A)
x^3+y^3=(x+4)^3…(B)
(B)の解は、(A)の解の4/√3倍となる。
76 名前:日高[] 投稿日:2021/02/19(金) 10:20:40.54 ID:rKZOm/2h [9/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(A)
x^3+y^3=(x+4)^3…(B)
(A)は、yを有理数とすると、xは無理数となる。
(B)の解は、(A)の解の4/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+1)^3…(A)
x^3+y^3=(x+2)^3…(B)
(B)の解は、(A)の解の2倍となる。
70 名前:日高[] 投稿日:2021/02/19(金) 08:40:38.17 ID:rKZOm/2h [6/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
74 名前:日高[] 投稿日:2021/02/19(金) 09:12:07.19 ID:rKZOm/2h [7/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2に、y=2を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
75 名前:日高[] 投稿日:2021/02/19(金) 10:15:38.93 ID:rKZOm/2h [8/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(A)
x^3+y^3=(x+4)^3…(B)
(B)の解は、(A)の解の4/√3倍となる。
76 名前:日高[] 投稿日:2021/02/19(金) 10:20:40.54 ID:rKZOm/2h [9/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(A)
x^3+y^3=(x+4)^3…(B)
(A)は、yを有理数とすると、xは無理数となる。
(B)の解は、(A)の解の4/√3倍となる。
945132人目の素数さん
2021/03/15(月) 10:02:37.03ID:PnrgeYpZ 77 名前:日高[] 投稿日:2021/02/19(金) 10:21:56.30 ID:rKZOm/2h [10/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(A)
x^3+y^3=(x+5)^3…(B)
(A)は、yを有理数とすると、xは無理数となる。
(B)の解は、(A)の解の5/√3倍となる。
78 名前:日高[] 投稿日:2021/02/19(金) 11:28:22.83 ID:rKZOm/2h [11/25]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^n(s,tは有理数、wは無理数)となる。
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなる。
79 名前:日高[] 投稿日:2021/02/19(金) 11:30:08.10 ID:rKZOm/2h [12/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
80 名前:日高[] 投稿日:2021/02/19(金) 11:33:55.58 ID:rKZOm/2h [13/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(A)
x^3+y^3=(x+5)^3…(B)
(A)は、yを有理数とすると、xは無理数となる。
(B)の解は、(A)の解の5/√3倍となる。
78 名前:日高[] 投稿日:2021/02/19(金) 11:28:22.83 ID:rKZOm/2h [11/25]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^n(s,tは有理数、wは無理数)となる。
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなる。
79 名前:日高[] 投稿日:2021/02/19(金) 11:30:08.10 ID:rKZOm/2h [12/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
80 名前:日高[] 投稿日:2021/02/19(金) 11:33:55.58 ID:rKZOm/2h [13/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
946132人目の素数さん
2021/03/15(月) 10:03:16.67ID:PnrgeYpZ 81 名前:日高[] 投稿日:2021/02/19(金) 12:49:52.66 ID:rKZOm/2h [14/25]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^n(s,tは有理数、wは無理数)となる。
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
82 名前:日高[] 投稿日:2021/02/19(金) 12:53:52.50 ID:rKZOm/2h [15/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3/2倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
83 名前:日高[] 投稿日:2021/02/19(金) 12:57:26.52 ID:rKZOm/2h [16/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2に、y=3を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
94 名前:日高[] 投稿日:2021/02/19(金) 19:09:45.47 ID:rKZOm/2h [19/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
95 名前:日高[] 投稿日:2021/02/19(金) 19:11:06.70 ID:rKZOm/2h [20/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+1)^2…(B)
(B)の解は、(A)の解の1/2となる。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^n(s,tは有理数、wは無理数)となる。
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
82 名前:日高[] 投稿日:2021/02/19(金) 12:53:52.50 ID:rKZOm/2h [15/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3/2倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
83 名前:日高[] 投稿日:2021/02/19(金) 12:57:26.52 ID:rKZOm/2h [16/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2に、y=3を代入する。
ピタゴラス数x=4、y=3、z=5を得る。
94 名前:日高[] 投稿日:2021/02/19(金) 19:09:45.47 ID:rKZOm/2h [19/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
95 名前:日高[] 投稿日:2021/02/19(金) 19:11:06.70 ID:rKZOm/2h [20/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+1)^2…(B)
(B)の解は、(A)の解の1/2となる。
947132人目の素数さん
2021/03/15(月) 10:03:53.02ID:PnrgeYpZ 97 名前:日高[] 投稿日:2021/02/19(金) 19:13:13.06 ID:rKZOm/2h [21/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
98 名前:日高[] 投稿日:2021/02/19(金) 19:14:14.27 ID:rKZOm/2h [22/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+1)^3…(A)
x^3+y^3=(x+2)^3…(B)
(B)の解は、(A)の解の2倍となる。
99 名前:日高[] 投稿日:2021/02/19(金) 19:15:33.83 ID:rKZOm/2h [23/25]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^n(s,tは有理数、wは無理数)となる。
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
107 名前:日高[] 投稿日:2021/02/20(土) 08:02:54.16 ID:+4Olc+ni [2/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
98 名前:日高[] 投稿日:2021/02/19(金) 19:14:14.27 ID:rKZOm/2h [22/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+1)^3…(A)
x^3+y^3=(x+2)^3…(B)
(B)の解は、(A)の解の2倍となる。
99 名前:日高[] 投稿日:2021/02/19(金) 19:15:33.83 ID:rKZOm/2h [23/25]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^n(s,tは有理数、wは無理数)となる。
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
107 名前:日高[] 投稿日:2021/02/20(土) 08:02:54.16 ID:+4Olc+ni [2/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
948132人目の素数さん
2021/03/15(月) 10:04:12.13ID:PnrgeYpZ 108 名前:日高[] 投稿日:2021/02/20(土) 08:04:06.54 ID:+4Olc+ni [3/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+1)^2…(B)
(B)の解は、(A)の解の1/2となる。
109 名前:日高[] 投稿日:2021/02/20(土) 08:05:01.68 ID:+4Olc+ni [4/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
110 名前:日高[] 投稿日:2021/02/20(土) 08:05:46.36 ID:+4Olc+ni [5/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+1)^3…(A)
x^3+y^3=(x+2)^3…(B)
(B)の解は、(A)の解の2倍となる。
111 名前:日高[] 投稿日:2021/02/20(土) 08:06:38.56 ID:+4Olc+ni [6/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^n(s,tは有理数、wは無理数)となる。
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+1)^2…(B)
(B)の解は、(A)の解の1/2となる。
109 名前:日高[] 投稿日:2021/02/20(土) 08:05:01.68 ID:+4Olc+ni [4/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
110 名前:日高[] 投稿日:2021/02/20(土) 08:05:46.36 ID:+4Olc+ni [5/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+1)^3…(A)
x^3+y^3=(x+2)^3…(B)
(B)の解は、(A)の解の2倍となる。
111 名前:日高[] 投稿日:2021/02/20(土) 08:06:38.56 ID:+4Olc+ni [6/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^n(s,tは有理数、wは無理数)となる。
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
949132人目の素数さん
2021/03/15(月) 10:04:39.74ID:PnrgeYpZ 117 名前:日高[] 投稿日:2021/02/20(土) 09:21:54.38 ID:+4Olc+ni [7/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
118 名前:日高[] 投稿日:2021/02/20(土) 09:23:27.31 ID:+4Olc+ni [8/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+1)^2…(B)
(B)の解は、(A)の解の1/2となる。
119 名前:日高[] 投稿日:2021/02/20(土) 09:24:59.41 ID:+4Olc+ni [9/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
120 名前:日高[] 投稿日:2021/02/20(土) 09:25:52.16 ID:+4Olc+ni [10/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+1)^3…(A)
x^3+y^3=(x+2)^3…(B)
(B)の解は、(A)の解の2倍となる。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
a(1/a)=1なので、(3)のみを検討すれば良い。(3)はyを有理数とすると、xは有理数となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
118 名前:日高[] 投稿日:2021/02/20(土) 09:23:27.31 ID:+4Olc+ni [8/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2…(A)
x^2+y^2=(x+1)^2…(B)
(B)の解は、(A)の解の1/2となる。
119 名前:日高[] 投稿日:2021/02/20(土) 09:24:59.41 ID:+4Olc+ni [9/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
120 名前:日高[] 投稿日:2021/02/20(土) 09:25:52.16 ID:+4Olc+ni [10/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+1)^3…(A)
x^3+y^3=(x+2)^3…(B)
(B)の解は、(A)の解の2倍となる。
950132人目の素数さん
2021/03/15(月) 10:05:12.73ID:PnrgeYpZ 121 名前:日高[] 投稿日:2021/02/20(土) 09:27:12.88 ID:+4Olc+ni [11/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
122 名前:日高[] 投稿日:2021/02/20(土) 10:00:49.02 ID:+4Olc+ni [12/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
123 名前:日高[] 投稿日:2021/02/20(土) 10:08:13.64 ID:+4Olc+ni [13/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
128 名前:日高[] 投稿日:2021/02/20(土) 10:18:28.46 ID:+4Olc+ni [14/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
122 名前:日高[] 投稿日:2021/02/20(土) 10:00:49.02 ID:+4Olc+ni [12/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
123 名前:日高[] 投稿日:2021/02/20(土) 10:08:13.64 ID:+4Olc+ni [13/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
128 名前:日高[] 投稿日:2021/02/20(土) 10:18:28.46 ID:+4Olc+ni [14/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
951132人目の素数さん
2021/03/15(月) 10:05:56.52ID:PnrgeYpZ 129 名前:日高[] 投稿日:2021/02/20(土) 10:19:47.19 ID:+4Olc+ni [15/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
130 名前:日高[] 投稿日:2021/02/20(土) 10:22:21.87 ID:+4Olc+ni [16/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
133 名前:日高[] 投稿日:2021/02/20(土) 10:23:34.94 ID:+4Olc+ni [17/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
135 名前:日高[] 投稿日:2021/02/20(土) 10:24:35.84 ID:+4Olc+ni [18/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
130 名前:日高[] 投稿日:2021/02/20(土) 10:22:21.87 ID:+4Olc+ni [16/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
133 名前:日高[] 投稿日:2021/02/20(土) 10:23:34.94 ID:+4Olc+ni [17/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
135 名前:日高[] 投稿日:2021/02/20(土) 10:24:35.84 ID:+4Olc+ni [18/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
952132人目の素数さん
2021/03/15(月) 10:07:15.24ID:PnrgeYpZ 139 名前:日高[] 投稿日:2021/02/20(土) 10:26:18.08 ID:+4Olc+ni [19/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
141 名前:日高[] 投稿日:2021/02/20(土) 10:27:37.06 ID:+4Olc+ni [20/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
142 名前:日高[] 投稿日:2021/02/20(土) 10:28:58.23 ID:+4Olc+ni [21/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
143 名前:日高[] 投稿日:2021/02/20(土) 10:30:14.97 ID:+4Olc+ni [22/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
141 名前:日高[] 投稿日:2021/02/20(土) 10:27:37.06 ID:+4Olc+ni [20/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
142 名前:日高[] 投稿日:2021/02/20(土) 10:28:58.23 ID:+4Olc+ni [21/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
143 名前:日高[] 投稿日:2021/02/20(土) 10:30:14.97 ID:+4Olc+ni [22/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
953132人目の素数さん
2021/03/15(月) 10:08:02.54ID:PnrgeYpZ 144 名前:日高[] 投稿日:2021/02/20(土) 10:31:30.32 ID:+4Olc+ni [23/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
145 名前:日高[] 投稿日:2021/02/20(土) 10:32:41.22 ID:+4Olc+ni [24/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
153 名前:日高[] 投稿日:2021/02/20(土) 12:06:05.61 ID:+4Olc+ni [28/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
154 名前:日高[] 投稿日:2021/02/20(土) 12:07:04.94 ID:+4Olc+ni [29/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
145 名前:日高[] 投稿日:2021/02/20(土) 10:32:41.22 ID:+4Olc+ni [24/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
153 名前:日高[] 投稿日:2021/02/20(土) 12:06:05.61 ID:+4Olc+ni [28/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
154 名前:日高[] 投稿日:2021/02/20(土) 12:07:04.94 ID:+4Olc+ni [29/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
954132人目の素数さん
2021/03/15(月) 10:08:32.75ID:PnrgeYpZ 155 名前:日高[] 投稿日:2021/02/20(土) 12:07:57.45 ID:+4Olc+ni [30/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
156 名前:日高[] 投稿日:2021/02/20(土) 12:08:45.75 ID:+4Olc+ni [31/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
157 名前:日高[] 投稿日:2021/02/20(土) 12:10:04.90 ID:+4Olc+ni [32/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
159 名前:日高[] 投稿日:2021/02/20(土) 12:11:05.61 ID:+4Olc+ni [33/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
156 名前:日高[] 投稿日:2021/02/20(土) 12:08:45.75 ID:+4Olc+ni [31/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
157 名前:日高[] 投稿日:2021/02/20(土) 12:10:04.90 ID:+4Olc+ni [32/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
159 名前:日高[] 投稿日:2021/02/20(土) 12:11:05.61 ID:+4Olc+ni [33/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
955132人目の素数さん
2021/03/15(月) 10:08:55.08ID:PnrgeYpZ 169 名前:日高[] 投稿日:2021/02/20(土) 16:02:29.67 ID:+4Olc+ni [38/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
170 名前:日高[] 投稿日:2021/02/20(土) 16:03:32.24 ID:+4Olc+ni [39/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
171 名前:日高[] 投稿日:2021/02/20(土) 16:04:20.64 ID:+4Olc+ni [40/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
172 名前:日高[] 投稿日:2021/02/20(土) 16:05:17.78 ID:+4Olc+ni [41/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
170 名前:日高[] 投稿日:2021/02/20(土) 16:03:32.24 ID:+4Olc+ni [39/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
171 名前:日高[] 投稿日:2021/02/20(土) 16:04:20.64 ID:+4Olc+ni [40/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
172 名前:日高[] 投稿日:2021/02/20(土) 16:05:17.78 ID:+4Olc+ni [41/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ
956132人目の素数さん
2021/03/15(月) 10:09:32.82ID:PnrgeYpZ 173 名前:日高[] 投稿日:2021/02/20(土) 16:06:48.52 ID:+4Olc+ni [42/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
174 名前:日高[] 投稿日:2021/02/20(土) 16:07:48.07 ID:+4Olc+ni [43/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
194 名前:日高[] 投稿日:2021/02/20(土) 20:37:44.81 ID:+4Olc+ni [53/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
195 名前:日高[] 投稿日:2021/02/20(土) 20:38:30.82 ID:+4Olc+ni [54/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
174 名前:日高[] 投稿日:2021/02/20(土) 16:07:48.07 ID:+4Olc+ni [43/59]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
194 名前:日高[] 投稿日:2021/02/20(土) 20:37:44.81 ID:+4Olc+ni [53/59]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
195 名前:日高[] 投稿日:2021/02/20(土) 20:38:30.82 ID:+4Olc+ni [54/59]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
957日高
2021/03/15(月) 10:29:51.64ID:JL63Al/K 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
958日高
2021/03/15(月) 10:31:04.35ID:JL63Al/K (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
959日高
2021/03/15(月) 10:32:05.15ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
960日高
2021/03/15(月) 10:33:04.13ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
961132人目の素数さん
2021/03/15(月) 11:06:39.78ID:PnrgeYpZ 957 名前:日高[] 投稿日:2021/03/15(月) 10:29:51.64 ID:JL63Al/K [18/21]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
958 名前:日高[] 投稿日:2021/03/15(月) 10:31:04.35 ID:JL63Al/K [19/21]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
959 名前:日高[] 投稿日:2021/03/15(月) 10:32:05.15 ID:JL63Al/K [20/21]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
960 名前:日高[] 投稿日:2021/03/15(月) 10:33:04.13 ID:JL63Al/K [21/21]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
958 名前:日高[] 投稿日:2021/03/15(月) 10:31:04.35 ID:JL63Al/K [19/21]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
n^{1/(n-1)}/w=u…(B)となるかを検討する。(uは有理数)
(A)より、w=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなる。
(B)に代入すると、(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
959 名前:日高[] 投稿日:2021/03/15(月) 10:32:05.15 ID:JL63Al/K [20/21]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
960 名前:日高[] 投稿日:2021/03/15(月) 10:33:04.13 ID:JL63Al/K [21/21]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
962132人目の素数さん
2021/03/15(月) 11:07:15.01ID:PnrgeYpZ 210 名前:日高[] 投稿日:2021/02/21(日) 07:01:13.30 ID:zINpMgMG [3/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
211 名前:日高[] 投稿日:2021/02/21(日) 07:02:35.21 ID:zINpMgMG [4/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
212 名前:日高[] 投稿日:2021/02/21(日) 07:03:50.70 ID:zINpMgMG [5/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
213 名前:日高[] 投稿日:2021/02/21(日) 07:05:07.70 ID:zINpMgMG [6/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
211 名前:日高[] 投稿日:2021/02/21(日) 07:02:35.21 ID:zINpMgMG [4/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
212 名前:日高[] 投稿日:2021/02/21(日) 07:03:50.70 ID:zINpMgMG [5/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
213 名前:日高[] 投稿日:2021/02/21(日) 07:05:07.70 ID:zINpMgMG [6/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
963132人目の素数さん
2021/03/15(月) 11:07:51.99ID:PnrgeYpZ 214 名前:日高[] 投稿日:2021/02/21(日) 07:06:48.76 ID:zINpMgMG [7/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
215 名前:日高[] 投稿日:2021/02/21(日) 07:08:13.90 ID:zINpMgMG [8/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
223 名前:日高[] 投稿日:2021/02/21(日) 07:58:12.53 ID:zINpMgMG [10/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
224 名前:日高[] 投稿日:2021/02/21(日) 07:59:34.13 ID:zINpMgMG [11/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
215 名前:日高[] 投稿日:2021/02/21(日) 07:08:13.90 ID:zINpMgMG [8/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
223 名前:日高[] 投稿日:2021/02/21(日) 07:58:12.53 ID:zINpMgMG [10/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
224 名前:日高[] 投稿日:2021/02/21(日) 07:59:34.13 ID:zINpMgMG [11/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
964132人目の素数さん
2021/03/15(月) 11:08:10.00ID:PnrgeYpZ 225 名前:日高[] 投稿日:2021/02/21(日) 08:01:25.29 ID:zINpMgMG [12/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
226 名前:日高[] 投稿日:2021/02/21(日) 08:02:46.49 ID:zINpMgMG [13/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
227 名前:日高[] 投稿日:2021/02/21(日) 08:03:46.63 ID:zINpMgMG [14/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
228 名前:日高[] 投稿日:2021/02/21(日) 08:05:07.88 ID:zINpMgMG [15/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
226 名前:日高[] 投稿日:2021/02/21(日) 08:02:46.49 ID:zINpMgMG [13/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
227 名前:日高[] 投稿日:2021/02/21(日) 08:03:46.63 ID:zINpMgMG [14/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
228 名前:日高[] 投稿日:2021/02/21(日) 08:05:07.88 ID:zINpMgMG [15/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
965132人目の素数さん
2021/03/15(月) 11:20:22.32ID:PnrgeYpZ 238 名前:日高[] 投稿日:2021/02/21(日) 09:21:04.20 ID:zINpMgMG [18/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
239 名前:日高[] 投稿日:2021/02/21(日) 09:22:05.85 ID:zINpMgMG [19/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
240 名前:日高[] 投稿日:2021/02/21(日) 09:23:05.10 ID:zINpMgMG [20/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
242 名前:日高[] 投稿日:2021/02/21(日) 09:24:08.18 ID:zINpMgMG [21/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
243 名前:日高[] 投稿日:2021/02/21(日) 09:25:08.93 ID:zINpMgMG [22/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
239 名前:日高[] 投稿日:2021/02/21(日) 09:22:05.85 ID:zINpMgMG [19/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
240 名前:日高[] 投稿日:2021/02/21(日) 09:23:05.10 ID:zINpMgMG [20/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
242 名前:日高[] 投稿日:2021/02/21(日) 09:24:08.18 ID:zINpMgMG [21/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
243 名前:日高[] 投稿日:2021/02/21(日) 09:25:08.93 ID:zINpMgMG [22/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
966132人目の素数さん
2021/03/15(月) 11:20:39.54ID:PnrgeYpZ 246 名前:日高[] 投稿日:2021/02/21(日) 10:07:10.49 ID:zINpMgMG [23/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
247 名前:日高[] 投稿日:2021/02/21(日) 10:09:25.21 ID:zINpMgMG [24/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
248 名前:日高[] 投稿日:2021/02/21(日) 10:12:03.66 ID:zINpMgMG [25/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
249 名前:日高[] 投稿日:2021/02/21(日) 10:12:59.47 ID:zINpMgMG [26/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=5/2を代入する。
ピタゴラス数x=9、y=40、z=41を得る。
247 名前:日高[] 投稿日:2021/02/21(日) 10:09:25.21 ID:zINpMgMG [24/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
248 名前:日高[] 投稿日:2021/02/21(日) 10:12:03.66 ID:zINpMgMG [25/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
249 名前:日高[] 投稿日:2021/02/21(日) 10:12:59.47 ID:zINpMgMG [26/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
967日高
2021/03/15(月) 12:28:04.94ID:JL63Al/K (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
968日高
2021/03/15(月) 12:31:08.53ID:JL63Al/K 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
969日高
2021/03/15(月) 12:32:00.46ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
970日高
2021/03/15(月) 12:33:09.53ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
971132人目の素数さん
2021/03/15(月) 12:51:24.77ID:PnrgeYpZ 967 名前:日高[] 投稿日:2021/03/15(月) 12:28:04.94 ID:JL63Al/K [22/25]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
968 名前:日高[] 投稿日:2021/03/15(月) 12:31:08.53 ID:JL63Al/K [23/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
969 名前:日高[] 投稿日:2021/03/15(月) 12:32:00.46 ID:JL63Al/K [24/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
970 名前:日高[] 投稿日:2021/03/15(月) 12:33:09.53 ID:JL63Al/K [25/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
968 名前:日高[] 投稿日:2021/03/15(月) 12:31:08.53 ID:JL63Al/K [23/25]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
969 名前:日高[] 投稿日:2021/03/15(月) 12:32:00.46 ID:JL63Al/K [24/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
970 名前:日高[] 投稿日:2021/03/15(月) 12:33:09.53 ID:JL63Al/K [25/25]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
972132人目の素数さん
2021/03/15(月) 12:52:01.80ID:PnrgeYpZ 250 名前:日高[] 投稿日:2021/02/21(日) 10:13:51.44 ID:zINpMgMG [27/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
251 名前:日高[] 投稿日:2021/02/21(日) 10:14:39.78 ID:zINpMgMG [28/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
252 名前:日高[] 投稿日:2021/02/21(日) 10:15:24.22 ID:zINpMgMG [29/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
256 名前:日高[] 投稿日:2021/02/21(日) 10:36:16.50 ID:zINpMgMG [30/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
251 名前:日高[] 投稿日:2021/02/21(日) 10:14:39.78 ID:zINpMgMG [28/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
252 名前:日高[] 投稿日:2021/02/21(日) 10:15:24.22 ID:zINpMgMG [29/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
256 名前:日高[] 投稿日:2021/02/21(日) 10:36:16.50 ID:zINpMgMG [30/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のan^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
973132人目の素数さん
2021/03/15(月) 12:52:22.02ID:PnrgeYpZ 257 名前:日高[] 投稿日:2021/02/21(日) 10:40:20.50 ID:zINpMgMG [31/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
258 名前:日高[] 投稿日:2021/02/21(日) 10:41:51.72 ID:zINpMgMG [32/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
259 名前:日高[] 投稿日:2021/02/21(日) 10:42:37.14 ID:zINpMgMG [33/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
260 名前:日高[] 投稿日:2021/02/21(日) 10:43:15.44 ID:zINpMgMG [34/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
258 名前:日高[] 投稿日:2021/02/21(日) 10:41:51.72 ID:zINpMgMG [32/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
259 名前:日高[] 投稿日:2021/02/21(日) 10:42:37.14 ID:zINpMgMG [33/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
260 名前:日高[] 投稿日:2021/02/21(日) 10:43:15.44 ID:zINpMgMG [34/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
974132人目の素数さん
2021/03/15(月) 12:52:43.03ID:PnrgeYpZ 261 名前:日高[] 投稿日:2021/02/21(日) 10:43:49.34 ID:zINpMgMG [35/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
262 名前:日高[] 投稿日:2021/02/21(日) 10:44:36.71 ID:zINpMgMG [36/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
263 名前:日高[] 投稿日:2021/02/21(日) 11:25:00.86 ID:zINpMgMG [37/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
264 名前:日高[] 投稿日:2021/02/21(日) 11:26:01.97 ID:zINpMgMG [38/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
262 名前:日高[] 投稿日:2021/02/21(日) 10:44:36.71 ID:zINpMgMG [36/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
263 名前:日高[] 投稿日:2021/02/21(日) 11:25:00.86 ID:zINpMgMG [37/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
264 名前:日高[] 投稿日:2021/02/21(日) 11:26:01.97 ID:zINpMgMG [38/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
975132人目の素数さん
2021/03/15(月) 12:53:21.65ID:PnrgeYpZ 269 名前:日高[] 投稿日:2021/02/21(日) 12:27:05.15 ID:zINpMgMG [41/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
270 名前:日高[] 投稿日:2021/02/21(日) 12:28:03.12 ID:zINpMgMG [42/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
271 名前:日高[] 投稿日:2021/02/21(日) 12:29:05.96 ID:zINpMgMG [43/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
272 名前:日高[] 投稿日:2021/02/21(日) 12:29:49.31 ID:zINpMgMG [44/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
270 名前:日高[] 投稿日:2021/02/21(日) 12:28:03.12 ID:zINpMgMG [42/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
271 名前:日高[] 投稿日:2021/02/21(日) 12:29:05.96 ID:zINpMgMG [43/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
272 名前:日高[] 投稿日:2021/02/21(日) 12:29:49.31 ID:zINpMgMG [44/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
976132人目の素数さん
2021/03/15(月) 12:55:47.47ID:PnrgeYpZ 273 名前:日高[] 投稿日:2021/02/21(日) 12:30:40.72 ID:zINpMgMG [45/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
274 名前:日高[] 投稿日:2021/02/21(日) 12:32:30.13 ID:zINpMgMG [46/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
283 名前:日高[] 投稿日:2021/02/21(日) 15:40:12.04 ID:zINpMgMG [48/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
274 名前:日高[] 投稿日:2021/02/21(日) 12:32:30.13 ID:zINpMgMG [46/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
283 名前:日高[] 投稿日:2021/02/21(日) 15:40:12.04 ID:zINpMgMG [48/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)のx,zを有理数とすると、yは、無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
977132人目の素数さん
2021/03/15(月) 13:03:54.34ID:PnrgeYpZ 284 名前:日高[] 投稿日:2021/02/21(日) 15:40:53.99 ID:zINpMgMG [49/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
285 名前:日高[] 投稿日:2021/02/21(日) 15:41:51.31 ID:zINpMgMG [50/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
286 名前:日高[] 投稿日:2021/02/21(日) 15:42:37.78 ID:zINpMgMG [51/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
287 名前:日高[] 投稿日:2021/02/21(日) 15:43:22.99 ID:zINpMgMG [52/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
288 名前:日高[] 投稿日:2021/02/21(日) 15:43:58.58 ID:zINpMgMG [53/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
285 名前:日高[] 投稿日:2021/02/21(日) 15:41:51.31 ID:zINpMgMG [50/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
286 名前:日高[] 投稿日:2021/02/21(日) 15:42:37.78 ID:zINpMgMG [51/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
287 名前:日高[] 投稿日:2021/02/21(日) 15:43:22.99 ID:zINpMgMG [52/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
288 名前:日高[] 投稿日:2021/02/21(日) 15:43:58.58 ID:zINpMgMG [53/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
978日高
2021/03/15(月) 13:13:46.33ID:JL63Al/K 【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
979日高
2021/03/15(月) 13:14:32.89ID:JL63Al/K (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
980日高
2021/03/15(月) 13:15:46.68ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
981日高
2021/03/15(月) 13:16:52.01ID:JL63Al/K 【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
982132人目の素数さん
2021/03/15(月) 17:42:49.45ID:qd3hea0v >>927
> >905
> しかしn^3+7y^3=z^3は自然数解x=y=1,z=2を持つんだよなあ。
>
> 式の形が、違います。
式の形は同じです。どちらも斉次式ですし。違うのは係数だけです。
> >905
> しかしn^3+7y^3=z^3は自然数解x=y=1,z=2を持つんだよなあ。
>
> 式の形が、違います。
式の形は同じです。どちらも斉次式ですし。違うのは係数だけです。
983日高
2021/03/15(月) 18:12:06.86ID:JL63Al/K >982
式の形は同じです。どちらも斉次式ですし。違うのは係数だけです。
はい。係数が、異なります。
式の形は同じです。どちらも斉次式ですし。違うのは係数だけです。
はい。係数が、異なります。
984日高
2021/03/15(月) 18:19:59.38ID:JL63Al/K (3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)はx,y,zが有理数のとき成立しないので、(C)も成立しない。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)はx,y,zが有理数のとき成立しないので、(C)も成立しない。
985132人目の素数さん
2021/03/15(月) 18:21:27.20ID:qd3hea0v >>983
係数が7のときの証明は明らかに誤り。それが1のときはなぜ成立すると言える?
係数が7のときの証明は明らかに誤り。それが1のときはなぜ成立すると言える?
986日高
2021/03/15(月) 19:11:11.62ID:JL63Al/K >985
係数が7のときの証明は明らかに誤り。それが1のときはなぜ成立すると言える?
係数を7とすると、x,y,zは整数比となります。
係数が7のときの証明は明らかに誤り。それが1のときはなぜ成立すると言える?
係数を7とすると、x,y,zは整数比となります。
987132人目の素数さん
2021/03/15(月) 19:31:32.78ID:PnrgeYpZ 978 名前:日高[] 投稿日:2021/03/15(月) 13:13:46.33 ID:JL63Al/K [26/32]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
979 名前:日高[] 投稿日:2021/03/15(月) 13:14:32.89 ID:JL63Al/K [27/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
980 名前:日高[] 投稿日:2021/03/15(月) 13:15:46.68 ID:JL63Al/K [28/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
981 名前:日高[] 投稿日:2021/03/15(月) 13:16:52.01 ID:JL63Al/K [29/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)の(an)^{1/(n-1)}、xが有理数のとき、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
979 名前:日高[] 投稿日:2021/03/15(月) 13:14:32.89 ID:JL63Al/K [27/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)のx,y,zが有理数とならないので、(C)は成立しない。
980 名前:日高[] 投稿日:2021/03/15(月) 13:15:46.68 ID:JL63Al/K [28/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
981 名前:日高[] 投稿日:2021/03/15(月) 13:16:52.01 ID:JL63Al/K [29/32]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
988自明です。
2021/03/15(月) 19:33:03.36ID:PnrgeYpZ 984 名前:日高[] 投稿日:2021/03/15(月) 18:19:59.38 ID:JL63Al/K [31/32]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)はx,y,zが有理数のとき成立しないので、(C)も成立しない。
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
(4)はx,y,zが有理数のとき成立しないので、(C)も成立しない。
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
989132人目の素数さん
2021/03/15(月) 19:33:23.01ID:qd3hea0v990132人目の素数さん
2021/03/15(月) 19:33:38.78ID:PnrgeYpZ 292 名前:日高[] 投稿日:2021/02/21(日) 15:56:22.30 ID:zINpMgMG [56/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
295 名前:日高[] 投稿日:2021/02/21(日) 16:09:09.50 ID:zINpMgMG [58/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
296 名前:日高[] 投稿日:2021/02/21(日) 16:09:55.75 ID:zINpMgMG [59/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
295 名前:日高[] 投稿日:2021/02/21(日) 16:09:09.50 ID:zINpMgMG [58/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
296 名前:日高[] 投稿日:2021/02/21(日) 16:09:55.75 ID:zINpMgMG [59/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
991132人目の素数さん
2021/03/15(月) 19:35:10.29ID:PnrgeYpZ 297 名前:日高[] 投稿日:2021/02/21(日) 16:10:42.22 ID:zINpMgMG [60/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
298 名前:日高[] 投稿日:2021/02/21(日) 16:11:22.81 ID:zINpMgMG [61/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
299 名前:日高[] 投稿日:2021/02/21(日) 16:12:07.32 ID:zINpMgMG [62/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
308 名前:日高[] 投稿日:2021/02/21(日) 17:52:29.47 ID:zINpMgMG [65/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
298 名前:日高[] 投稿日:2021/02/21(日) 16:11:22.81 ID:zINpMgMG [61/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
299 名前:日高[] 投稿日:2021/02/21(日) 16:12:07.32 ID:zINpMgMG [62/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
308 名前:日高[] 投稿日:2021/02/21(日) 17:52:29.47 ID:zINpMgMG [65/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
992132人目の素数さん
2021/03/15(月) 19:35:15.34ID:qd3hea0v993132人目の素数さん
2021/03/15(月) 19:35:41.55ID:PnrgeYpZ 309 名前:日高[] 投稿日:2021/02/21(日) 17:53:18.47 ID:zINpMgMG [66/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
310 名前:日高[] 投稿日:2021/02/21(日) 17:54:10.72 ID:zINpMgMG [67/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
311 名前:日高[] 投稿日:2021/02/21(日) 17:55:05.20 ID:zINpMgMG [68/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
312 名前:日高[] 投稿日:2021/02/21(日) 17:55:59.69 ID:zINpMgMG [69/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
310 名前:日高[] 投稿日:2021/02/21(日) 17:54:10.72 ID:zINpMgMG [67/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
311 名前:日高[] 投稿日:2021/02/21(日) 17:55:05.20 ID:zINpMgMG [68/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
312 名前:日高[] 投稿日:2021/02/21(日) 17:55:59.69 ID:zINpMgMG [69/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
994132人目の素数さん
2021/03/15(月) 19:36:46.51ID:PnrgeYpZ 313 名前:日高[] 投稿日:2021/02/21(日) 17:56:45.08 ID:zINpMgMG [70/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
334 名前:日高[] 投稿日:2021/02/21(日) 19:50:05.99 ID:zINpMgMG [78/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
335 名前:日高[] 投稿日:2021/02/21(日) 19:51:01.28 ID:zINpMgMG [79/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
336 名前:日高[] 投稿日:2021/02/21(日) 19:51:53.38 ID:zINpMgMG [80/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
334 名前:日高[] 投稿日:2021/02/21(日) 19:50:05.99 ID:zINpMgMG [78/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
335 名前:日高[] 投稿日:2021/02/21(日) 19:51:01.28 ID:zINpMgMG [79/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
336 名前:日高[] 投稿日:2021/02/21(日) 19:51:53.38 ID:zINpMgMG [80/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
995132人目の素数さん
2021/03/15(月) 19:40:36.77ID:PnrgeYpZ 338 名前:日高[] 投稿日:2021/02/21(日) 19:53:10.95 ID:zINpMgMG [81/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
340 名前:日高[] 投稿日:2021/02/21(日) 19:58:15.79 ID:zINpMgMG [83/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
341 名前:日高[] 投稿日:2021/02/21(日) 19:59:26.79 ID:zINpMgMG [84/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
351 名前:日高[] 投稿日:2021/02/21(日) 21:04:37.37 ID:zINpMgMG [89/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
340 名前:日高[] 投稿日:2021/02/21(日) 19:58:15.79 ID:zINpMgMG [83/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
341 名前:日高[] 投稿日:2021/02/21(日) 19:59:26.79 ID:zINpMgMG [84/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
351 名前:日高[] 投稿日:2021/02/21(日) 21:04:37.37 ID:zINpMgMG [89/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
996132人目の素数さん
2021/03/15(月) 19:41:37.51ID:PnrgeYpZ 352 名前:日高[] 投稿日:2021/02/21(日) 21:05:23.41 ID:zINpMgMG [90/95]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
354 名前:日高[] 投稿日:2021/02/21(日) 21:06:10.80 ID:zINpMgMG [91/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
357 名前:日高[] 投稿日:2021/02/21(日) 21:12:12.62 ID:zINpMgMG [93/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
358 名前:日高[] 投稿日:2021/02/21(日) 21:12:51.15 ID:zINpMgMG [94/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
354 名前:日高[] 投稿日:2021/02/21(日) 21:06:10.80 ID:zINpMgMG [91/95]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
357 名前:日高[] 投稿日:2021/02/21(日) 21:12:12.62 ID:zINpMgMG [93/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
358 名前:日高[] 投稿日:2021/02/21(日) 21:12:51.15 ID:zINpMgMG [94/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
997132人目の素数さん
2021/03/15(月) 19:43:43.42ID:PnrgeYpZ 359 名前:日高[] 投稿日:2021/02/21(日) 21:13:34.79 ID:zINpMgMG [95/95]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
376 名前:日高[] 投稿日:2021/02/22(月) 06:49:26.66 ID:PZMTv96e [3/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
377 名前:日高[] 投稿日:2021/02/22(月) 06:50:35.46 ID:PZMTv96e [4/34]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
376 名前:日高[] 投稿日:2021/02/22(月) 06:49:26.66 ID:PZMTv96e [3/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、x,zは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(4)はx,zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
377 名前:日高[] 投稿日:2021/02/22(月) 06:50:35.46 ID:PZMTv96e [4/34]
(3)のx,yが無理数の場合は、x=sw、y=twとおく。
(sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w^n)^n…(A)となるので、
s+n^{1/(n-1)}/w^n=u…(B)となるかを検討する。(uは有理数)
(A)より、w^n=n^{1/(n-1)}/(s^n+t^n)^(1/n)-sとなるので、(B)に代入すると、
(s^n+t^n)^(1/n)=u、s^n+t^n=u^n…(C)となる。
(C)は、(4)のx,y,zが有理数の場合と、同じとなるが、(4)のx,y,zは、有理数とならない。
998132人目の素数さん
2021/03/15(月) 19:44:40.43ID:E847/zgk >>984
> (3)のx,yが無理数の場合は、x=sw、y=twとおく。
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
> 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
> s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
> w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
> (4)はx,y,zが有理数のとき成立しないので、(C)も成立しない。
「(4)はx,y,zが有理数のとき成立しないので」の根拠はなんですか?
> (3)のx,yが無理数の場合は、x=sw、y=twとおく。
> (sw)^n+(tw)^n=(sw+n^{1/(n-1)})^nとなる。(s,tは有理数、wは無理数)
> 両辺をw^nで割ると、s^n+t^n=(s+n^{1/(n-1)}/w)^n…(A)となる。
> s+n^{1/(n-1)}/w=uとなるかを検討する。(uは有理数)
> w=n^{1/(n-1)}/(u-s)を(A)に代入すると、s^n+t^n=u^n…(C)となる。
> (4)はx,y,zが有理数のとき成立しないので、(C)も成立しない。
「(4)はx,y,zが有理数のとき成立しないので」の根拠はなんですか?
999132人目の素数さん
2021/03/15(月) 19:45:51.47ID:PnrgeYpZ 378 名前:日高[] 投稿日:2021/02/22(月) 06:52:50.32 ID:PZMTv96e [5/34]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
379 名前:日高[] 投稿日:2021/02/22(月) 06:53:52.32 ID:PZMTv96e [6/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
380 名前:日高[] 投稿日:2021/02/22(月) 06:54:41.65 ID:PZMTv96e [7/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
381 名前:日高[] 投稿日:2021/02/22(月) 06:56:16.55 ID:PZMTv96e [8/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
【定理】n≧3のとき、x^n+y^n=z^nは自然数解を持たない。
x^3+y^3=(x+√3)^3…(3)
x^3+y^3=(x+1)^3…(4)
(4)の解は、(3)の解の1/√3倍となる。
379 名前:日高[] 投稿日:2021/02/22(月) 06:53:52.32 ID:PZMTv96e [6/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2{x}(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+(a2))^2…(4)となる。
(3)はyを有理数とすると、x,zは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解を持つ。
380 名前:日高[] 投稿日:2021/02/22(月) 06:54:41.65 ID:PZMTv96e [7/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+2)^2に、y=4を代入する。
ピタゴラス数x=3、y=4、z=5を得る。
381 名前:日高[] 投稿日:2021/02/22(月) 06:56:16.55 ID:PZMTv96e [8/34]
【定理】n=2のとき、x^n+y^n=z^nは自然数解を持つ。
x^2+y^2=(x+1)^2…(A)
x^2+y^2=(x+√3)^2…(B)
(B)の解は、(A)の解の√3倍となる。
(A),(B)とも、ピタゴラス数x=3、y=4、z=5を得る。
1000132人目の素数さん
2021/03/15(月) 19:48:59.42ID:PnrgeYpZ 33 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 17:54:38.01 ID:FbLTf6OQ [17/27]
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
>32
> AB=2*3ならば、A=2となります。
> それ、どこで習いました?
自明です。
39 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:11:18.17 ID:FbLTf6OQ [22/27]
>37
>AB=3*2ならどうなりますか?
A=3となります。
41 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 18:25:35.86 ID:FbLTf6OQ [23/27]
>40
>2*3=3*2であることは認めますか?
はい。
46 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:31:54.72 ID:FbLTf6OQ [26/27]
>44
>AB=6ならどうなりますか?
A=a6,B=6(1/a)となります。(aは実数)
55 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/04(木) 19:45:08.18 ID:FbLTf6OQ [28/31]
>48
>AB=1*6ならどうなりますか?
A=1,B=6となります。
74 名前:日高[kokaji222@yahoo.co.jp] 投稿日:2021/03/05(金) 06:54:33.89 ID:oiQwpH62
>69
>AB=2*3のときAB=3*2でもあるわけですが、このときはどうなりますか?
AB=2*3のときは、A=2,B=3です。
AB=3*2のときは、A=3,B=2です。
10011001
Over 1000Thread このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 11日 7時間 25分 48秒
新しいスレッドを立ててください。
life time: 11日 7時間 25分 48秒
10021002
Over 1000Thread 5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。
運営にご協力お願いいたします。
───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────
会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。
▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/
▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
運営にご協力お願いいたします。
───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────
会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。
▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/
▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
レス数が1000を超えています。これ以上書き込みはできません。
ニュース
- 【食品衛生】すき家がネズミ混入を認めて謝罪「従業員が提供前に商品状態の目視確認を怠った」 約2ヶ月にわたり非公表 ★6 [牛乳トースト★]
- 【兵庫県】机たたいて叱責、夜間休日チャット、第三者委が斎藤知事のパワハラを認定した全10件一覧★15 [七波羅探題★]
- 【野球】大谷翔平効果恐るべし MLB東京開幕シリーズを日本人の4人に1人が見た! 視聴者数、売り上げ、観客動員で過去最高記録を更新 [冬月記者★]
- 【バイク】ヤマハ、若者に爆発的人気の“おしゃれ”125ccスクーターをサプライズ公開!日本発売を予告…大阪モーターサイクルショー2025 [牛乳トースト★]
- 刑の執行直前「お別れです」 オウム中川元死刑囚が遺書 [七波羅探題★]
- 【神奈川】シラスでノロウイルス食中毒 購入者は約1100人 藤沢市 [牛乳トースト★]
- 【悲報】斎藤元彦陣営のネット広報担当会社が投稿したnoteで騒然★597 [931948549]
- 【急募】劇場版「山上徹也」に採用したいシーン👈なに? [315952236]
- ●兎田ぺこら、エメラルド人生縛り四天王前最後の冒険❗ 21:00~ ★2
- ビジネス右翼は沢山いるのにビジネス左翼がいないのはなんで? [998357762]
- 「オウム真理教」の何が間違ってたのか、自分の頭で考えて論理的に答えられるやついる?周りに流されてるだけじゃね? [281145569]
- 【 放送開始100周年当日】金曜土曜夜のクイズスレ【クイズスレ開始11周年当日】