【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。x,yは有理数とする。
(1)を積の形にすると、r^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(2)となる。
(2)はa=1、r^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(2)はa=1以外、r^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(4)となる。
(3)の右辺を展開すると、x,yが有理数、p^{1/(p-1)}が無理数なので、(3)は成り立たない。
(4)の(ap)^{1/(p-1)}が有理数のとき、x,yは、(3)のx,yのa^{1/(p-1)}倍となるので、(4)も成り立たない。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。