>>211
つづき

ベストアンサーに選ばれた回答
san********さん 2017/1/903:02:35
まず,言葉の定義を確認しておきます。
環R(ここでは可換環としますが,非可換な環でも同様)において,
単位元を1,零元を0とするとき,
a∈R が可逆元であるとは,あるb∈Rでab=ba=1となるものが存在するときにいう。
(このbはaに対して一意的に定まり,aの逆元と呼ばれ,a^(-1)で表す)
a∈R が零因子であるとは,a≠0であり,あるb∈Rでb≠0,かつ ab=0となるものが存在するときにいう。

ここで,一般的に可換環で1≠0であることに注意します。
(極端な例として,R={0}という零環というものがありますが,ここでは考えません)
さて,a∈Rが可逆元かつ零因子であるとすると,
aは逆元a^(-1)をもつ。
そして,零因子であるから,あるb∈Rが存在し,b≠0,ab=0 を満たす。
この両辺にa^(-1)をかけると,
a^(-1)・a・b=a^(-1)・0
(a^(-1)・a)・b=a^(-1)・0
1・b=a^(-1)・0
よって,b=0 となり,b≠0に反し,矛盾。
よって,可逆元かつ零因子となる元は存在しない。

零因子が,「0でないもの同士であり,その積が0となるもの」という点がポイントです。

余談ですが,今回のこの事実は,
2つの2次正方行列で,どちらも零行列ではないが積が零行列になるものを考えると,これらはどちらも逆行列を持たない
ことを一般化したものです。
復習のために,この具体例を作って考察してみて下さい。

つづく