純粋・応用数学(含むガロア理論)3
https://rio2016.5ch.net/test/read.cgi/math/1595166668/155-156
より、再掲

追加(下記では"正則"という語は出てこない)
https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E7%BE%A4
行列群
(抜粋)
行列群はある体 K、通常は前もって固定される、上の可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n × n 行列を考えることができる
線型群は体 K 上の行列群に同型な抽象群である、言い換えれば、K 上の忠実な有限次元表現をadmitする

任意の有限群は線型である、なぜならばそれはケイリーの定理(英語版)を使って置換行列によって実現できるからだ。無限群(英語版)の中で、線型群は面白く扱いやすいクラスをなす。線型でない群の例はすべての「十分大きい」群を含む。例えば、無限集合の置換からなる無限対称群

基本的な例
可換環 R 上の n × n 行列全体の集合 MR(n,n) はそれ自身行列の加法と乗法の下で環である。MR(n,n) の単元群は環 R 上の n × n 行列の一般線型群と呼ばれ、GLn(R) あるいは GL(n,R) と表記される。すべての行列群は一般線型群の部分群である

古典群
詳細は「古典群(英語版)」を参照
とりわけ面白い行列群はいわゆる古典群(英語版)である。行列群の係数の環が実数のとき、これらの群は古典リー群(英語版)である。基礎環が有限体であるとき古典群はリー型の群(英語版)である。これらの群は有限単純群の分類において重要な役割を果たす

行列群としての有限群
すべての有限群はある行列群と同型である。これはすべての有限群はある置換群と同型であると述べるケイリーの定理(英語版)と似ている。同型の性質は推移的であるので、置換群から行列群をどのように構成するかを考えるだけでよい

表現論と指標理論
線型変換と行列は(一般的に言って)数学においてよく理解されている対象であり、群の研究において広範囲に渡って使われてきた。とくに表現論は群から行列群への写像を研究し、指標理論は表現のトレースによって与えられる群から体への準同型を研究する

つづく