>>773 補足

数学の歴史は、数学概念の拡張の歴史ともいえる
複素数まで拡張してガウス整数を考えるなどは、古典的な例だ
数概念に限らず、さまざまな概念の拡張がなされてきた
例えば、無限遠点を付け加えた射影幾何など
拡張された概念で考えることが良い結果を生む
必要なら、拡張から元に戻ると見通しが良いことが多い
時枝も同じ

(参考)
https://ja.wikipedia.org/wiki/%E6%95%B0

(抜粋)
数概念の拡張の歴史
数の概念は人類の歴史とともに、非常に長い年月をかけて、ゆっくりと、徐々に、拡張されてきた。
自然数に加えて、古代バビロニアや古代インドにおいて、現代で言う「ゼロ」に似たような概念を使おうとする人が現れた。
なお、「1, 2, 3, 4, 5...」という概念しか知らなかったところに加えて、「ゼロ」という概念を発明し 数を拡張したことは、数学の長い歴史の中でも特に大きな跳躍だった、とされることがある。「無い」ということを「ひとつの概念」を扱おうとしたこと
有理数から実数への拡張はこのような演算とは異なるギャップを埋めることで得られ、代数方程式の解法を通じて虚数を含む複素数へと拡張された。
・自然数 → 整数 → 有理数 → 実数 → 複素数
ものの個数の概念である自然数を拡張して基数が、ものの順番を表す意味での自然数の拡張として順序数が定義される。複素数を更に拡張したものとして、四元数、八元数・十六元数などの体系がある。あるいは、実数に加えて無限小や無限大を含む超実数などの体系もある。

・基数 - 有限基数(= 自然数)、無限基数
・順序数 - 有限順序数(= 自然数)、超限順序数
・実数 → 複素数 → 四元数 → 八元数 → 十六元数
・有理数 → p-進数 (+ 実数 → アデール)
・実数 → 超実数

https://ja.wikipedia.org/wiki/%E5%B0%84%E5%BD%B1%E5%B9%BE%E4%BD%95%E5%AD%A6
射影幾何学
(抜粋)
透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。
これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。