<再録>
前スレ 58 https://rio2016.5ch.net/test/read.cgi/math/1547388554/541
古典ガロア理論も読む2019/01/23
「代表元から新しい情報をもらう」なんてことにはならない!!
だろ?(^^

例えば、
mod2で考えて、(合同は下記ご参照)

2で割り切れると偶数、
2で割り切れないと奇数
と呼ばれる

偶数の代表を2とする
奇数の代表を3とする

偶数で
2と任意の数2nとの共通点は、「2で割り切れること」以外なにもない。
だから、代表2と任意の数2nとを比較したところで、新たに得られる情報などなにも無い!
代表を2mにとり直して、任意の数2nとを比較したところで、新たに得られる情報などなにも無い!
「2で割り切れること」は、もともと数2nが持っていた性質であって、代表と比べて得られた情報ではない!

奇数で
3と任意の数2n+1との共通点は、2で割り切れないこと以外なにもない。
だから、代表3と任意の数2n+1とを比較したところで、新たに得られる情報などなにも無い!
代表を2m+1にとり直して、任意の数2n+1とを比較したところで、新たに得られる情報などなにも無い!
「2で割り切れないこと」は、もともと数2n+1が持っていた性質であって、代表と比べて得られた情報ではない!

つまりは、
「数学における同値類で、同値類の代表 r と、その同値類内の任意の元 x との共通点は、単に同じ同値類に属するということのみ」
「同値類の代表 r と、その同値類内の任意の元 x とを比較したところで、得られる新たな情報などなにもない!」

数学の同値類の基本でしょ?
まあ、初心者には分かり難いかも知れないがね
その錯覚を利用しているのが、時枝記事の”ふしぎな戦略”

https://ja.wikipedia.org/wiki/%E6%95%B4%E6%95%B0%E3%81%AE%E5%90%88%E5%90%8C
整数の合同
(抜粋)
同値律
法 n に関する合同という関係は以下の性質を満たす:

・反射律: 任意の整数 a に関して a ≡ a (n);
・対称律: 任意の整数の対 a, b に関して a ≡ b (n) ←→ b ≡ a (n);
・推移律: 任意の整数の組 a, b, c に関して a ≡ b (n) かつ b ≡ c (n) ならば a ≡ c (n).
即ち法 n に関する合同という関係は同値関係である。
(引用終わり)
以上