>>673の改訂版)
3)さて、本論
反例を構成する。(なお、当然だが、反例は一つで良い(定理の証明は全てを尽くす必要があるが))

a)時枝記事(詳しくは>>21及び、記号などは>>644ご参照)において、箱の数を、十分大きな*)「有限」個の場合を考える。
 (*):例えば無限に近い巨大な数と思って貰えば分り易いだろう
  例えば、有限の範囲で、貴方の知っている(あるいは考え得る)大きな数を頭に浮かべてください。その数+1で結構です)
b)箱の数 L=100mとする。 ここにmは、前述のように十分大きな正整数とする。
c) L=100m個の箱を、100列のm個の箱の列に並び変える。
 m個の長さの数列の しっぽの同値類を考えることができ、決定番号dを決めることができる。
 決定番号dは、1<= d <=m の値を取る。
c')ここで、簡単のために、部分集合として、決定番号が、1<= d <=(m-1)の場合を考える。
d)100列の決定番号の大小比較から、100列中のあるk列で
 決定番号 d^k 1<= k <=100 が、最大値 D = max(d^1, d^2,・・・d^100) を取る確率は、1/100に過ぎない
 D >= d^k である確率は、99/100となる。
e)後は、時枝記事に書いてあるように、k列で(D+1) 番目から先の箱だけを開け、k列の代表のD 番目の数を見て、k列の代表のD 番目の数を推測すれば、的中確率は99/100となる。
f)つまり、上記の確率について、確率空間 (Ω,F,μ) において、標本空間 Ω={1,・・・,100} と取れることを意味する。
g)標本空間 Ω={1,・・・,100}とすることによって、“D >= d^k である確率は、99/100” が導かれる。
 これにより、k列で(D+1) 番目から先の箱だけを開け、k列の代表のD 番目の数を見て、k列の代表のD 番目の数と一致すると推測すれば、的中確率は99/100となる。
 時枝記事の解法が成立する。
(以上は、>>644-645に記述の数学ロジックの通りです)
以上です。