>>161の若干の一般化とその導出を備忘録的に書いておきます。

>>60
まず、部屋を探る順番が一般の場合を考える。
部屋がNあり、その集合をRとする。A君、B君が探る順番を表わす全単射写像をそれぞれf,gとする:
f,g: R→{0,1,…,N-1} (順番は0から始まるとする。)
部屋自体の位置はなんら答えに影響しない。
σ=g・f^{-1} と置くと、σは{0,1,…,N-1}の置換。(・は写像の合成)
A君がi番目に探る部屋はB君がσ(i)番目に探る部屋ということ。
以下、「A君がi番目に探る部屋」のことを「部屋i」ということにする。

求めたいのは、「A君がB君よりも早く宝を見つける宝の配置の数」であるが、宝の数をcとすると、それは
 Σ[σ(i)>i] binomial(#{j| j>i, σ(j)>i}, c-1) (0≦i,j≦N-1、binomialは二項係数)
である。
なぜか?
「A君が初めて宝を見つける部屋(部屋iとする)」で場合分けしよう。
(つまり部屋0〜i-1には宝がなく、部屋iに宝がある場合)
部屋iはB君がσ(i)番目に探る部屋だからσ(i)>iでないと
少なくともB君はA君よりも前か同時に部屋iで宝を見つける
(B君はその前に別の部屋で宝を見つけることもある)ことになりA君は勝てない。
したがって、σ(i)>iが必要。
残りのc-1個の宝は部屋i+1〜N-1にあるが、宝がある部屋を部屋jとすると、
やはりσ(j)>iでないといけない。逆に全部の宝でそうであればA君が勝つ。
よって、残りのc-1個の宝が置かれてもいい部屋の数は#{j| j>i, σ(j)>i}だけあり、
全部そこに置かれる場合はbinomial(#{j| j>i, σ(j)>i}, c-1)通り。
したがって、上記のようになる。

続く