X



トップページ数学
1002コメント415KB

【数セミ】エレガントな解答をもとむ3【2018.10】

■ このスレッドは過去ログ倉庫に格納されています
0653132人目の素数さん
垢版 |
2020/06/11(木) 04:05:02.72ID:U1wqDpVl
出題1、結果だけならプログラム組めば出せる
無論、そこにエレガントさはカケラもない。

1から2倍と桁入れ替えで到達可能な数をリストアップすると、以下を除く4桁の数(5558個)になった。
これらが1に到達不可能なことを確かめるのは難しくない。

・3の倍数
・全ての桁が奇数
・全ての桁が2か6
・1114, 1141, 1411, 4111, 1118, 1181, 1811, 8111, 2228, 2822, 2282, 8222, 4444, 8888
0654132人目の素数さん
垢版 |
2020/06/11(木) 04:16:45.02ID:1i56AYPZ
まず、3の倍数であることは(1)(2)で変わらない。

最大n回(2)が可能、で考察すると
0回:全ての桁が奇数
1回:全ての桁が2か6、1114, 1141, 1411, 4111, 1118, 1181, 1811, 1110, 1101, 1011
これは下2桁が4の倍数+2、2で割って千の位が奇数、2で割って十の位が奇数、を考えればよい。

2倍→桁を入れ替え→2で割る、という手順でここから抜けられない数を順次リストアップしていくと
2回:2228, 2822, 2282, 8222, 4444, 2220, 2202, 2022
3回:8888, 4440, 4404, 4044
4回:8880, 8808, 8088
5回:なし

となって、上記に含まれない数は手順を選べば無限回(2)が可能。
蜂の巣原理から、その手順のどこかで桁の組合せが同じ数に戻る。
……までは考察できたが、それが1に到達可能な数という保証ができないな。
0655132人目の素数さん
垢版 |
2020/06/11(木) 04:33:35.28ID:TkJPwCTf
読み直してみると、途中で3桁に落ちるパターンが考慮から漏れているかな。
3桁でも同じようなことを考えることはできそうだが。
0656132人目の素数さん
垢版 |
2020/06/11(木) 09:39:36.05ID:2VKGJNso
・3の倍数
 1002から9999まで  3000個
・全ての桁が奇数 {1,3,5,7,9}
 5^4 - 208 (3の倍数) = 625 - 208 = 417個
・全ての桁が {2,6}
 2^4 - 4 (2が3個) -1 (6666) = 11個
・{1114} {1118} {2228}, 4444, 8888 = 14個
・{1110} {2220} {4440} {8880} は3の倍数 = 0個

ここまで 3442個 (到達不能)

・全体で
1000から9999まで 9000個

・上記のリストにないものは
9000 - 3442 = 5558個
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況