>>113
以下想定解答です

Aは滑らかとして十分(軟化などをする)

dを∂Aに対する符号付き距離関数,すなわち
d(x):=dist(x,∂A) (=inf{dist(x,y) | y∈∂A}) (x∈A) , -dist(x,∂A) (x∈A^c) とする

x∈∂Aのとき,∇d(x)は∂Aの外向き単位法線ベクトルとなる
また,∇・∇d(x)=△d(x)は∂Aの点xにおける平均曲率となる
また,Aは凸より,任意のt<0に対して,{x∈R^n | d(x)=t}も凸

滑らかな凸集合の平均曲率は正より,△d(x)≧0 (x∈A-B)
A⊂Bより,0≦∫_(B-A) △d(x) dx=∫_B △d(x)dx-∫_A △d(x)dx

ガウスの発散定理より n_S(x)をSの外向き単位法線べクトルとすれば,
∫_B △d(x)dx-∫_A △d(x)dx=∫_(∂B) ∇d(x)・n_(∂B)(x) dS-∫_(∂A) ∇d(x)・n_(∂A)(x) dS
≦S(∂B)-S(∂A) (∵∇d(x)・n_(∂A)(x)=n_(∂A)(x)・n_(∂A)(x)=1 (x∈∂A) ,∇d(x)・n_(∂B)(x)≦|∇d(x)||n_(∂B)(x)|≦1 (x∈∂B))

よってS(∂A)≦S(∂B)