次に (Z/3pZ)* におけるグループ分けを考える。
そのために 2 の位数を考える。
(Z/3pZ)* は (Z/3Z)*×(Z/pZ)* に同型で、
(Z/3Z)*, (Z/pZ)* それぞれにおいて 2 の位数は 2, (p-1)/2。
p≡3 (mod 4) より (p-1)/2 は奇数。
よって、(Z/3pZ)* における 2 の位数は 2, (p-1)/2 の最小公倍数である p-1。

一方、(Z/3pZ)* の要素の個数は 2(p-1)。
(Z/3pZ)* において 2 で生成される部分群を B1 とし
B1 以外の元全体を B2 とおくと、|B1|=|B2|=p-1。

補題2
3 の倍数でも p の倍数でもない整数 b に対し、
(1) b が mod 3p で B1 に属する ⇔ b が mod p で A1 に属する
(2) b が mod 3p で B2 に属する ⇔ b が mod p で A2 に属する

証明
(1)のみ示せば十分である。
まず b が mod 3p で B1 に属するとすると、ある d で
 b≡2^d (mod 3p)
と書ける。このとき b≡2^d (mod p) も成り立つので、b は mod p で A1 に属する。
したがって ⇒ が成り立つ。

ここで、射影 π:(Z/3pZ)* → (Z/pZ)* を考える。πは全射。
さらに (Z/3pZ)*, (Z/pZ)* の要素数がそれぞれ 2(p-1), p-1 であることから、πは2対1写像。
⇒ が成り立つことから π(B1)⊂A1 が成り立つが、要素数を比較して π(B1)=A1 を得る。
したがって ⇔ が成り立つ。□