一応、まとめてみる。

自然数 p と q を考えよう。

とりあえず、p は措いておいて q について考える。

2^q - 3 は、2 < q のときに、二進数で q - 1 桁になる。いちおう、
「q が 1 のとき、結果がマイナスになるのだが、ちゃんと考えてるか?」
とかいった話もあるが、ここでは正の数だけを考えることにする。

つぎに、メルセンヌ数 p^2 - 1 を考える。これは p - 1 桁の数になる。

これを結合したビット列を考えよう。それは (2^p - 1) + 2^p × (2^q - 3) であり、
桁数としては (p - 1)+(q - 1) 桁であるから、p + q - 2 となる。

このとき、「2^q - 3 に『三倍して2を足す』操作を p 回繰り返した結果に
コラッツ操作を施すことで、どれほどの桁数(これを n とする)になり、
最下位に何桁(これを m とする)のメルセンヌ数が出てくるか?」を
考える(m < n であることに注意)。

m と n を p と q の関数で表して、 n - m が q - 1 よりもどんどん大きく
なっていったら、コラッツ予想は「はずれ」だということになる。

おそらく、最悪のケースで見積もると、“爆発”(無限大に発散)すると思う。
そうでなかったら、コラッツ問題はとっくに解決しているはずだ。
だから、相当に ややこしいテクニックを駆使して「最悪のケース」を避けて
「無限大には発散しない」ことが示せれば、コラッツ予想は肯定的に証明される
ことになる。

そんなにうまくゆくとも思えないし、可能だとしても相当に苦労するだろうとは
思うのだが、方向性としては ちょっと新しいように思うので、「難しい」とか
「ダメっぽい」とか「ここから先で行き詰まった」くらいの実績は残しておいても
いいと思う。
コラッツ予想に関する「やってみたけどダメだった」的な論文というのは
山ほどあるのだから、いまさら何本かのクズ論文が増えたところで
文句を言う奴もおるまい。