複素n次元の複素数空間 C^n は、複素数体C上のn次の線型空間で実数体R上だと2n次の線型空間。
n=1 としても同じで、このときはCと書く。複素平面Cのことを丁寧に C^1 と書いても意味がない。
話を戻す。2つの平面 C と R^2 は加法群として同型で加法の演算を保っていて同じ平面と見なせる。
だが、平面 R^2 を直線とはいわない。平面 R^2 上の直線はRに当たる。
加法の演算を保ったまま複素平面Cに直した直後の状態について、
平面C上においての同様なことを書くと、平面C上の直線は実軸つまり直線Rに当たる。

あと、複素n次元の数空間 C^n の「数」がそもそも何を指していのか考えてみる。
一般に、複素n次元の空間の点のごくごく普通の座標は、n個の複素数を成分に持つ。
複素n次元の数空間の 「C^n」 は、複素数体C上のn次の線型空間で実数体R上だと2n次の線型空間だから、
記号の表記に従えば、数空間 C^n の「数」は複素数を指している。その反面で、RはCの真部分集合。
故に、「複素n次元の数空間 C^n 」を敢えて丁寧に書けば、「複素n次元の実数空間 C^n 」ではなく、
「複素n次元の複素数空間 C^n 」と書くのが適切になる。