>>709

 (aa+3bb)(bb+3cc)(cc+3aa) ≧ {(a+b)(b+c)(c+a)}^2,

左辺は a,b,c の符号によらない。
a,b,c の符号だけを変えたとき、右辺が最も大きいのは a,b,c が同符号のもの。
∴ a,b,c >0 に対して成立てば十分。

(左辺)/(右辺) = (aa+3bb)/(a+b)^2・(bb+3cc)/(b+c)^2・(cc+3aa)/(c+a)^2 = f(a/b) f(b/c) f(c/a),
ここに f(x) = (xx+3)/(x+1)^2,

a,b,c >0 ⇒ f(a/b) f(b/c) f(c/a) ≧ 1 を示す。

(1) a/b, b/c, c/a の1つが 0 < x ≦ (-16+√333)/7 = 0.321184 にあるとき。

 [4f(x)-3](x+1)^2 = 4(xx+3) -3(x+1)^2 = (x-3)^2 ≧ 0,
∴ f(x) の最小値は f(3) = 3/4
 f(x) ≧ (4/3)^2 となるものが1つでもあれば 成立する。
 その条件は [16f(x)-9](x+1)^2 = 16(x+1)^2 -9(xx+3) = 7xx +32x -11 ≦ 0,
 -4.8926125 = (-16-√333)/7 ≦ x ≦ (-16+√333)/7 = 0.321184

(2) a/b, b/c, c/a ≧ (-16+√333)/7 = 0.321184 のとき。
 x ≧ (-16+√333)/7 = 0.321184 のとき
 x(x+1)^4 - (xx+3)^2 = (x^3 +x^2 +3x-1)(x-1)^2 ≧ 0,
∴ f(x) ≧ 1/√x,
∴ f(a/b) f(b/c) f(c/a) ≧ √(b/a) √(c/b) √(a/c) = 1,

以上により成立つ。

>>710 訂正
(左辺) = (a^n)(a-b)^2 + (a^n-b^n+c^n)(a-b)(b-c) + (c^n)(b-c)^2,