【微積分絡み】

(D1) [Putnum 1999]
実関数 f がC^3級で、任意の x∈R に対して、
 0 < f'(x)、 0 < f''(x)、 0 < f'''(x) ≦ f(x)
をみたすとき、f'(x) < 2f(x) を示せ。

(D2) [AoPS]
f は [0,1] で単調増加な凸関数で、f(0)=0、f(1)=1 をみたす。
g を fの逆関数とするとき、x^2 ≧ f(x)g(x) を示せ。

(D3) [近大 2008]
実関数 f がC^2級で、任意の x∈R に対して f''(x)≧f(x) をみたすとき、
f(x) ≧ f(0)*{e^x + e^(-x)}/2 + f'(0)*{e^x - e^(-x)}/2

(D4) [山梨医改、不等式bot]
f(0) = f(1) = 0、f'は[0,1]で連続のとき、∫[0,1] {f'(x)}^2 dx ≧ (π^2)*∫[0,1] {f(x)}^2 dx

(D5) [京大院 2011]
実連続関数 f,φ は区間[a,b]上で狭義単調増加のとき、
∫[a,b] f(x)dx = 0 ならば、∫[a,b] f(x)φ(x)dx > 0 を示せ。

(D6) [羅馬尼亜 2004]
fが[0,1]で積分可能で、∫[0,1] f(x)dx = ∫[0,1] xf(x)dx = 1 のとき、∫[0,1] {f(x)}^2 dx ≧ 4