〔Popoviciuの不等式〕
f(x) が下に凸ならば、 (a+b+c)/3 = m に対して
f(a) + f(b) + f(c) + 3f(m) ≧ 2f((a+b)/2) + 2f(a+c)/2) + 2f((b+c)/2),

(略証)
a≦b≦c としてよい。
(i) a,b ≦ m ≦ c のとき
f(a) + f(b) ≧ 2f((a+b)/2),
f(m) + f(c) ≧ 2f((m+c)/2),
2f(m) + 2f((m+c)/2) ≧ 2f((a+c)/2) + 2f((b+c)/2),
辺々たす。

(ii) a ≦ m ≦ b,c のとき
f(a) + f(m) ≧ 2f((a+m)/2)
2f((a+m)/2) + 2f(m) ≧ 2f((a+b)/2) + 2f((a+c)/2),
f(b) + f(c) ≧ 2f((b+c)/2),
辺々たす。

文献[9]佐藤淳郎(訳)p.41 演習問題1.89