>>4
> for reals
> [1] (a^2+2)(b^2+2)(c^2+2) >= (1+a+b)(1+b+c)(1+c+a)
> for nonnegarives
> [3] (a^2+2)(b^2+2)(c^2+2) >= 3(a+b+c)^2+(abc-1)^2
> [4] (x^2+2)(y^2+2)(z^2+2) >= 4(x^2+y^2+z^2)+5(xy+yz+zx)+(xyz-1)^2
> [5] (a^2+2)(b^2+2)(c^2+2) >= 4(a^2+b^2+c^2)+5(ab+bc+ca)+(abc(a-1)^2(b-1)^2(c-1)^2)^(1/3)

>>70
> [1] (a^2+2)(b^2+2)(c^2+2) ≧ (1+a+b)(1+b+c)(1+c+a) ≧ 9(ab+bc+ca)
> [2] (a^2+2)(b^2+2)(c^2+2) ≧ 3(a+b+c)^2        ≧ 9(ab+bc+ca)
> [3] (a^2+2)(b^2+2)(c^2+2) ≧ (2a+2b+2c-abc)^2

>>86
> (1) (a^2+2)(b^2+2)(c^2+2) ≧ (ab+2)(bc+2)(ca+2)
> (2) (a^2+2)(b^2+2)(c^2+2) ≧ (2√2)*(a+b)(b+c)(c+a)
> (3) (a^2+2)(b^2+2)(c^2+2) ≧ 8*√{(a+b)(b+c)(c+a)}

>>101
> (a^2+2)(b^2+2)(c^2+2) ≧ (1/2)*(a+√2)(b+√2)(c+√2)(abc+2√2) ≧ 16abc√2

>>169
> a, b, c∈R、t≧0に対して、
> (a^2+2)(b^2+2)(c^2+2) ≧ {(16√6)/9}*(a-b)(b-c)(c-a)
> (a^2+t^2)(b^2+t^2)(c^2+t^2) ≧ {8t^3/(3√3)}*(a-b)(b-c)(c-a)

------------------------------------------------------

(a^2+2)(b^2+2)(c^2+2)がらみ
http://artofproblemsolving.com/community/c6h76508p897772
a, b, c >0 かつ k≦4 に対して、
(a^2+2)(b^2+2)(c^2+2) ≧ k(a^2+b^2+c^2) + (9-k)(ab+bc+ca)

リンク先の証明がよく分かりませぬ…