X



トップページ数学
1002コメント345KB
面白い問題おしえて〜な 二十四問目 [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2017/08/07(月) 00:07:33.27ID:y+VPlwP8
過去ログ
http://www3.tokai.or.jp/meta/gokudo-/omoshi-log/
まとめwiki
http://www6.atwiki.jp/omoshiro2ch/

1 http://cheese.2ch.net/test/read.cgi/math/970737952/
2 http://natto.2ch.net/test/read.cgi/math/1004839697/
3 http://science.2ch.net/test/read.cgi/math/1026218280/
4 http://science.2ch.net/test/read.cgi/math/1044116042/
5 http://science.2ch.net/test/read.cgi/math/1049561373/
6 http://science.2ch.net/test/read.cgi/math/1057551605/
7 http://science2.2ch.net/test/read.cgi/math/1064941085/
8 http://science3.2ch.net/test/read.cgi/math/1074751156/
9 http://science3.2ch.net/test/read.cgi/math/1093676103/
10 http://science4.2ch.net/test/read.cgi/math/1117474512/
11 http://science4.2ch.net/test/read.cgi/math/1134352879/
12 http://science6.2ch.net/test/read.cgi/math/1157580000/
13 http://science6.2ch.net/test/read.cgi/math/1183680000/
14 http://science6.2ch.net/test/read.cgi/math/1209732803/
15 http://science6.2ch.net/test/read.cgi/math/1231110000/
16 http://science6.2ch.net/test/read.cgi/math/1254690000/
17 http://kamome.2ch.net/test/read.cgi/math/1284253640/
18 http://kamome.2ch.net/test/read.cgi/math/1307923546/
19 http://uni.2ch.net/test/read.cgi/math/1320246777/
20 http://wc2014.2ch.net/test/read.cgi/math/1356149858/
21 http://wc2014.2ch.net/test/read.cgi/math/1432255115/
22 http://rio2016.2ch.net/test/read.cgi/math/1464521266/
23 http://rio2016.2ch.net/test/read.cgi/math/1497416499/
0750132人目の素数さん
垢版 |
2018/01/08(月) 00:23:28.18ID:27YyLP77
面白くないよ
0751132人目の素数さん
垢版 |
2018/01/08(月) 01:04:46.73ID:syCUhg30
とりあえず答えてみたら
0752132人目の素数さん
垢版 |
2018/01/08(月) 05:02:49.08ID:o2HjFYS0
>>700
アホな質問かもしれないけど、教えてください。
3行目と5行目から6行目が出てくるのが分かりませぬ…。
抜き出すと、次の部分です。

2^n≡1 (mod p) かつ 2^(p-1)≡1 (mod p) ならば、2^(gcd(n, p-1))≡1 (mod p)
0754132人目の素数さん
垢版 |
2018/01/08(月) 08:00:02.08ID:xaiDjCmX
ユークリッドの互除法。
a,bに対してx,yが存在して
gcd(a,b)=ax+by。

2^gcd(a,b)=(2^a)^x(2^b)^y。
0755132人目の素数さん
垢版 |
2018/01/08(月) 22:27:26.32ID:6yE9/RTC
>>734 >>747 >>753

交点P(3/7,6/7)

OP =(3/7)√5,
AP =(1/7)√10,
BP =(4/7)√5,
CP =(6/7)√10,
より
OP:AP = 3:√2,
CP:BP = 3:√2,
また
OC:AB = 3:√2,
∠OPC = ∠APB
よって
△OPC ∽ △APB
また
C1 ∽ C2
D1 ∽ D2
面積比は 9:2

楕円 C1,C2 は点Pで接するから、D1∩D2 ={P}
(点Pにおける共通接線はOCとABの2等分線の方向で、それらと 22.5°の角をなす。)

楕円C1について
a =(CP+OP)/2,b =√(aa - 9/4),e =(3/2a),

楕円C2について
a' =(AP+BP)/2 =(√2)/3 a,b' =(√2)/3 b,e' = 1/(a'√2)= e,

S = S(D1)+ S(D2)= πab + πa'b' = πab +(2/9)πab =(11/9)πab,
0756132人目の素数さん
垢版 |
2018/01/08(月) 22:32:17.07ID:6yE9/RTC
>>755 の続き

数値を入れると、

a =(3/14)(2√10 + √5)= 1.83441928
b =(3/7)√(5√2 -1)= 1.05598015
e =(2√10 - √5)/5 = 0.81769747

a' = 0.86475354
b' = 0.49779382
e' = e

S = 2.36757932π
0757132人目の素数さん
垢版 |
2018/01/09(火) 01:18:49.79ID:LGZC+Dl2
肝心な2つの楕円が接することの説明がないじゃん
0758132人目の素数さん
垢版 |
2018/01/09(火) 11:21:56.60ID:dgOIUcU6
>>757
D1∩D2 ={P}の証明

D1とD2が点Qを共有したとする。
Q∈D1 より OQ + CQ ≦ OP + CP = 2a,
Q∈D2 より AQ + BQ ≦ AP + BP = 2a’
辺々たすと
OQ + AQ + BQ + CQ ≦(OP + BP)+(AP + CP)= OB + AC … (1)

一方、△不等式から、
OQ + BQ ≧ OB,
AQ + CQ ≧ AC,
辺々たすと
OQ + AQ + BQ + CQ ≧ OB + AC … (2)
等号成立はQ ∈(OB∩AC)={P}のとき。

(1)(2)より等号が成立する。
∴ Q = P.
0759132人目の素数さん
垢版 |
2018/01/09(火) 12:15:48.79ID:LGZC+Dl2
>>758
正解!
楕円が相似形になること・楕円同士が接することに気付くのがこの問題のポイントでした。
0761132人目の素数さん
垢版 |
2018/01/09(火) 19:21:05.59ID:szzDHmE7
どっちかの封筒に2倍の金が入ってるってやつで
もし10000だったら1/2で5000、1/2で20000になるから
期待値的に絶対交換した方がいいってやつさ
面白い問題教えてーな激しくガイシュツのやつでみたんだけど
あれの解説が納得できない


普通に1/2で低い方、1/2で高い方選ぶんだから、片方の金額をx、もう片方を2xってすると、低い方とる確率が1/2、高い方とる確率も1/2なんだから、期待値は
(1/2)x+(1/2)2x=(3/2)x
だから、もし低い方だったら期待値とくらべて自分の手持ちが3倍、高かったら手持ちが3/4倍になるんだから1/2(1/2)x(3)+1/2(2x)(3/4)=(3/2)x
だから交換してもしなくても期待値は変わらないっていう説明じゃだめなん?
0762132人目の素数さん
垢版 |
2018/01/09(火) 20:49:50.68ID:aBLuETRh
>>759
わざとらしい厚化粧を剥がすことのみがポイントってこと?
0763132人目の素数さん
垢版 |
2018/01/10(水) 13:38:16.66ID:yyayDtEj
>>761
一万円を入れた封筒と、二万円を入れた封筒を用意し、この二つの封筒を、大きな封筒に入れる。これをAとする。
一万円を入れた封筒と、五千円を入れた封筒を用意し、この二つの封筒を、大きな封筒に入れる。これをBとする。
AとBは外見では区別がつかない。

問題1:Aを50、Bを50、合計100用意し、箱に入れて、よくかき混ぜる。
 箱からランダムに一つ大きな封筒を取りだし、その大きな封筒の中から一つ封筒を取りだし、中身を確認すると
 一万円が入っていた。その大きな封筒に入っている、もう一方の封筒の中身が二万円である確率は?

問題2:Aを10、Bを90、合計100用意し、箱に入れて、よくかき混ぜる。箱から...≪以下同文≫

問題3:Aをn、Bを100−n、合計100用意し、箱に入れて、よくかき混ぜる。箱から...≪以下同文≫

問題4:AとBを併せて100用意し、箱に入れて、よくかき混ぜる。箱から...≪以下同文≫

問題5:AとBを併せて一つ用意し、箱に入れた。つまり、AかBを用意して箱に入れた。箱から封筒を取りだし、...≪以下同文≫
0764132人目の素数さん
垢版 |
2018/01/10(水) 13:38:55.46ID:yyayDtEj
つづき
 761の問題は、問題5に相当するものだが、761さんは無条件にA・Bが用意されている確率は共に1/2として議論している。
果たしてそれは妥当か? それが正しいというのならば、「A・Bが用意されている確率は共に1/2」に相当する内容が問題文
で確認できなければならない。確認できるのは、大きな封筒に入っている二つの封筒の内、どちらを選ぶかが1/2というだけ。
Aが用意されていて、二つの封筒から一つを選ぶとき、一万円を選ぶ確率は1/2で、二万円を選ぶ確率も1/2だが、
この確率事象は終了し、すでに一万円を選んでいる。ここで交換したら、他方の封筒には確率1で二万円が入っている。
同様に、Bが用意されていて、一万を選び、ここで、封筒を交換したら確率1で五千円が入っている。
Aが用意されている確率、Bが用意されている確率を、どうして、「大きな封筒の中の二つの封筒から一方を選ぶ」
のと同じように 1/2 と、判断できるのか? 
Aが用意されている確率、Bが用意されている確率が、「大きな封筒の中の二つの封筒から一方を選ぶ」のと同じように、
1/2 づつだ と、巧みに思わされているだけ。

上の問題では、問う内容が「もう一方の封筒の中身が二万円の確率は」となっているが、
「交換したときの期待値は」としてもよい。そして、問題1から3では、きちんと期待値が計算できるが、
問題4,5では出来ない。理由は、必要な情報が問題に無いから。
同様に、761の問題でも期待値は計算でない。
この問題に、(勝手な想定を置かずに)期待値を持ち出して議論しても本質にはたどり着かない。

二つの封筒問題には、「数学的見地から、あるいは、期待値という観点から、交換すべきかどうかの判断は出来ない」
というのが妥当で正当な結論。
0765132人目の素数さん
垢版 |
2018/01/10(水) 21:59:39.97ID:w1qVs6Aq
金額で期待値測るからだめなんだろ
金額とは別に金額から決まる嬉しさを表す数値(経済学の効用関数)を導入する

最初にあけた封筒の中身a円と
一般の金額x円に対して
嬉しさの関数が log_2 (x/a) の人にとっては何も悩むことはない
0766132人目の素数さん
垢版 |
2018/01/10(水) 22:30:57.84ID:yyayDtEj
>>765
1/2教信者が矛盾を避けるために導入したアイデア。オッカムの剃刀で棄てられる。
0768132人目の素数さん
垢版 |
2018/01/11(木) 15:00:59.48ID:gGnDAYFj
>>763
ちなみにこれの問題3を解くとどうなります?
0769132人目の素数さん
垢版 |
2018/01/12(金) 01:55:04.09ID:Or3GsGEd
正の数aが a + 1/a = [a] +[1/a] + 1 をみたすとき、aは無理数であることを示せ。ここで[a]はガウス記号。
0770132人目の素数さん
垢版 |
2018/01/12(金) 05:28:29.23ID:aNi1PHCw
>>767
 ±πiずれる。

>>769

x -[x]={x}とおくと
 0 ≦{x}< 1
 {a}+{1/a}= 1,

a または 1/a が整数のとき
 {a}= 0 または{1/a}= 0 ゆえ、和は1より小さい。

a が分数のとき
 a = p/q(p,q≧2 は自然数、互いに素)
 {a}= m/q,{1/a}= n/p,
 p,qは互いに素だから、和は1にならない。
0771132人目の素数さん
垢版 |
2018/01/12(金) 07:38:08.51ID:D//7CCq/
>>769
(a^2+1)/a=n
a^2-na+1=0
a=(n±√(n^2-4))/2
aが有理数→√(n^2-4)=p/q
n^2-4=p^2/q^2
q=1
n^2-p^2=(n-p)(n+p)=4
n=±2,p=0,a=±1
a+1/a=±2≠[a]+[1/a]+1=1±2
NG
aは無理数
a=(3+√5)/2
1/a=(3-√5)/2
[a]=2
[1/a]=0
a+1/a=3=[a]+[1/a]+1
aは存在
0772132人目の素数さん
垢版 |
2018/01/12(金) 12:06:24.79ID:ECD3lcV6
>>764
1/2じゃないの?
例えば金額をxと置き換えて10000となるのは
x=5000、2x=10000の時と
x=10000、2x=20000の時
この2つになる確率は同じはず
xの上限が無限になると確率が分からなくなるって事?
それは数学的におかしくね?
0773132人目の素数さん
垢版 |
2018/01/12(金) 13:50:19.98ID:C3nTSBqQ
>>772
> この2つになる確率は同じはず
そういう設定かどうかが問題では不明なので

現実の問題として考えると
5,000円と10,000円の2つが用意してあったが選ぶ人には「どちらかがどちらかの2倍」としか言わなかった
引いた人は袋を替えることが出来るが替えた方が得か?
という問題だと考えることも出来るというかむしろ妥当
こうなると替えた方が得かどうかは不明としか言いようがなく確率で考える問題ではなくなっている
0774132人目の素数さん
垢版 |
2018/01/12(金) 14:08:19.79ID:mFtDwv+X
二封筒問題は、必ず議論が紛糾するネタであり、
雑多な問題を扱うこのスレには向かないので
別のところでやっていただいたほうがよいと思われます。
0775132人目の素数さん
垢版 |
2018/01/12(金) 14:19:58.85ID:ECD3lcV6
>>773
なるほど
つまり問題文として不備があるってことね
>>774
そうなんだ
あまり数学板に来た事がなくて
すまなんだ
0777132人目の素数さん
垢版 |
2018/01/12(金) 17:41:00.08ID:jxiFg+zg
>>764
ベイジアン的にはどっちも同等だから1/2でしょうよ
0778132人目の素数さん
垢版 |
2018/01/12(金) 17:48:50.65ID:jxiFg+zg
>>761
交換しなければ期待値は1万円確定
交換したら期待値は5000p+20000(1-p)=20000-15000p
p=1/2が妥当な推測として12500円
0779132人目の素数さん
垢版 |
2018/01/12(金) 19:10:46.08ID:f4N6ck+k
p=1/2が妥当な推測になるような数学的根拠がまったくわからない

ってのが指摘されていることなんじゃないのかね
0781132人目の素数さん
垢版 |
2018/01/13(土) 13:53:16.51ID:vxAtUgvr
>>771

n は3以上の自然数とする。
 n-1 <(n+√(nn-4))/2 < n,
(n-√(nn-4))/2 = 2/(n+√(nn-4))< 1,

∴[a]+[1/a]= n-1,

∴ a + 1/a =[a]+[1/a]+ 1,
0782132人目の素数さん
垢版 |
2018/01/13(土) 13:53:42.05ID:BrLzT1uQ
正整数Nの全ての約数dに対して1/(d^2+N)の総和が1/Nに等しくなるような、正整数Nを全て求めよ
0786132人目の素数さん
垢版 |
2018/01/13(土) 18:11:43.15ID:p9jSzu0M
>>779
>p=1/2が妥当な推測になるような数学的根拠がまったくわからない
ベイジアンでは
推測できないときには同等と考えます
0788132人目の素数さん
垢版 |
2018/01/13(土) 19:47:02.49ID:IcEcp/Nx
>> ベイジアンでは
>> 推測できないときには同等と考えます

違います。考えていません。ただ単にそれを採用しているだけ。

データ更新こそがベイズ流の本質。ベイジアンは初期データにこだわりはない。
初期データは最終的に寄与が小さくなるためどのようなものでも大差が無いと考えている。
ただ、何の情報が無い場合でも、何らかの初期データは無理矢理にでも設定しなければならない。
それが無ければデータ更新も何も出来ないから。

初期データは、最終的には寄与が小さくなるため、全て同じでも、好みによって差をつけてもかまわない。
経験を駆使して、最終結果に近いであろうデータを用いるのが効率的であろうし、収束が早い。
ここに実行者の経験や能力が現れる。

≪  しかし、そのような技術の関与が無いことの方が望ましいと考える場合や、  ≫
≪ 主観が入っていないことを明確にしたいような場合には、水平データを使うのが無難といえる。 ≫

その例が多くあるというだけ。その単なる『配慮』を以て、
「水平データから始めることこそ、ベイジアン流だ」等と勘違いしている1/2信奉者が、ベイジアンを語っているだけ。
0789132人目の素数さん
垢版 |
2018/01/13(土) 21:18:54.94ID:p9jSzu0M
>>788
こだわりがないときは1/2とします
0790132人目の素数さん
垢版 |
2018/01/13(土) 21:23:01.93ID:p9jSzu0M
この問題に関してはp=1/2で確定です
なぜかと言えば金額は不明で倍額ということだけ指定されていて
たまたま1万円が見えたと言うだけ
1万と5000あるいは1万と2万荷限定されるわけではなく
xと2xの封筒がどんな比率でも構わず無数にある中から
1組選ばれているというだけのことだからですよ
その中でx=10000か2x=10000かは等確率つまりp=1/2で確定ですね
0791132人目の素数さん
垢版 |
2018/01/13(土) 21:30:54.11ID:W7ucPUwR
>>789
それは貴方個人のこだわりでしかない
「ベイジアンでは推測できないときには同等と考えます」は誤り

というのが趣旨でしょう
0792132人目の素数さん
垢版 |
2018/01/13(土) 22:02:11.13ID:Bhnz9Zau
これを1/2と思い込んでしまいがちだから面白い問題になるってことなんだろうな
0794132人目の素数さん
垢版 |
2018/01/13(土) 23:14:32.89ID:j2acKMxk
ベイズ統計学は、ベイズ改訂という改訂の連鎖に価値があるのであって、
改訂前の単なる初期値には何の価値も無い。

ベイズにおける 1/2 という値は改訂前の単なる初期値に過ぎないのだから、
この 1/2 という数値を「妥当」だと言い張ったところで何の価値も無い。
「ベイジアンでは推測できないときには同等と考えます」と言い張ったところで、
それは主観確率の初期設定をどうしたいかというマインドコントロールでしかなく、
数学的根拠になり得ない。

常識的に考えても、改訂前の単なる決めつけである「 1/2 」という値から
期待値を計算したところで、その期待値も単なる決めつけでしかなく、何の価値も無い。
そこで確率の改訂を繰り返すことで、主観確率なのに客観性が上がっていくことが
期待されるところに、ベイズ統計学の価値がある。

そして、この違いを分からないバカがベイズ統計学をやる価値も無い。
0795132人目の素数さん
垢版 |
2018/01/13(土) 23:32:21.00ID:n+R0iV0s
要は一様分布と仮定するか否かってだけでしょ
どっちも間違ってないと思うけどな
0797132人目の素数さん
垢版 |
2018/01/13(土) 23:42:48.49ID:W7ucPUwR
>要は一様分布と仮定するか否かってだけでしょ
問題の在り処を取り違えている
(今の状況で)一様分布を仮定することがベイズ統計では自動的に承認されるのか、それとも特記すべき事項なのかが争点
0798132人目の素数さん
垢版 |
2018/01/14(日) 00:09:28.63ID:yNhhPVL1
いろいろあるねえ
0799132人目の素数さん
垢版 |
2018/01/14(日) 00:34:31.02ID:7iI/H+u5
この問題は金額の分布が問題にされているのではなく
2つのうちどちらを選んで10000円が出たかというところだけが考慮すべき事柄です
金額の分布を云々している人はアホとしか言いようがありませんね
もう一方が5000円であるか20000円であるかは等確率すなわちp=1/2ですので
選択を変更する場合に得られる期待値は12500円
すなわち選択は必ず変更するべきと言うことです
0802132人目の素数さん
垢版 |
2018/01/14(日) 01:08:42.58ID:9RpZhmpe
いっそ二封筒問題のスレを立てればいいんでないかな
0804132人目の素数さん
垢版 |
2018/01/15(月) 14:41:10.85ID:Nr3Tqe6F
2整数の最大公約数を(a,b)で表す。(a,b)=cの時ax+by =cは必ず整数解を持つというベズーの等式を少し高級な視点から証明してみましょう!

ℤを整数全体の集合とする。ℤの部分集合Iでa,b∈I⇒a-b∈I,a∈I,n∈ℤ⇒na∈ℤ の2条件を満たす様なものをイデアル(Ideal)と呼ぶ。例えば2ℤ={2n|n∈ℤ}はイデアルである。
⑴m∈ℤ⇒mℤはイデアルとなる事を示せ

⑵I⊂ℤがイデアルならばある整数mを用いてI=mℤとなる事を示せ(Iの中で最も絶対値の小さい0でない整数をmと置こう)
0805132人目の素数さん
垢版 |
2018/01/15(月) 14:41:31.11ID:Nr3Tqe6F
⑶2つのイデアルの和、つまりmℤ+nℤ={mk+nl | k,l∈ℤ}はイデアルである事を示せ

⑷ベズーの等式が成り立つ事を示せ
0806132人目の素数さん
垢版 |
2018/01/15(月) 18:49:29.36ID:DUXDgO4Y
⑴a,b∈mℤ⇒a=mk,b=ml (k,l∈ℤ)と置け、
a-b=m(k-l)∈mℤ,
n∈ℤ⇒na=m(nk)∈mℤ
よりてmℤはイデアル

⑵I={0}の時、I=0ℤより成立
I≠{0}の時、Iの要素で絶対値の最も小さな0でない元をmと置きてI=mℤを示す
イデアルの定義よりmℤ⊂Iであり、
a∈I⇒a=mq+r (0≦r<|m|)と表せり、
r=a-mqは仮定よりイデアルIの元
r≠0の時に此れはmの最小性に反するので
r=0故にI⊂mℤとなりI=mℤ

⑶⑴と同様

⑷⑶よりaℤ+bℤはイデアルである
故にある整数dを用いてaℤ+bℤ=dℤとなる
示すべきはd=cである
a∈dℤ,b∈dℤよりdはa,bの公約数
又、d'をa,bの任意の公約数とした時に或る整数x,yが存在しax+by=dとなるのでd'はdの約数
以上よりd=cとなり、ベズーの等式は示された □
0807132人目の素数さん
垢版 |
2018/01/15(月) 18:52:06.13ID:DUXDgO4Y
簡単すぎw
0808132人目の素数さん
垢版 |
2018/01/16(火) 08:17:17.98ID:PWgP6/+/
面白い問題教えテーな
0809132人目の素数さん
垢版 |
2018/01/17(水) 03:49:10.39ID:PWBeFkV2
a<cで(a,a+3,c)というピタゴラス数の組は存在するか?(類題:近大数コン2014)
0810132人目の素数さん
垢版 |
2018/01/17(水) 03:50:03.08ID:PWBeFkV2
(a+3)<cね
0811132人目の素数さん
垢版 |
2018/01/17(水) 07:16:24.17ID:leMdf1QC
自然数nに対して、n乗積分
∫_(R^n) 1/(1+||x||^(2n))dx
を求めよ
(||・||はユークリッドノルム)
0812132人目の素数さん
垢版 |
2018/01/17(水) 10:16:43.95ID:YoDVUQg0
>>809
3で割ったあまりを調べるとないことがわかる。
0814132人目の素数さん
垢版 |
2018/01/17(水) 11:11:08.99ID:EO7VHN63
>>813
(12,16,20)だな
0815132人目の素数さん
垢版 |
2018/01/17(水) 13:09:12.30ID:c5xzziUo
私はあなたに面白い問題を教えてくれるでしょう!

私は日本語を話せませんので、英語で問題を書きます。
多分、私は日本語で答えを読むことができるので、あなたは日本語でそれを書くことができます。
できれば、私の問題を日本語に翻訳してください。

Consider the 2^1013 numbers ±1±2±...±1013.
How many of these numbers are 2017 in modulo 2027?
Express your answer in modulo 1000.

ありがとう!
0816132人目の素数さん
垢版 |
2018/01/17(水) 13:19:19.15ID:9qRKZbfk
スパムメールっぽい日本語だな
☆☆☆ あなたがアマゾンにアカウントはロック!至急パスワードに変更!! ☆☆☆
みたいなの
0818132人目の素数さん
垢版 |
2018/01/17(水) 14:11:20.04ID:1S3G2BEK
>>815
例えば1+…+384−385+386+…+1013≡2017(mod 2027)である
2027は奇数であるので、この問題は以下と同値である
「1から1013までの整数の集合の部分集合のうち、総和が385+2027k(kは整数)となる部分集合の個数の下3桁を求めよ」
0819132人目の素数さん
垢版 |
2018/01/17(水) 14:15:53.19ID:YoDVUQg0
元の問題って和訳すると?
0821132人目の素数さん
垢版 |
2018/01/17(水) 14:56:22.18ID:1S3G2BEK
答え出ちゃったね
>>819
【訳】
±1±2±...±1013の形の2^1013個の数を考えよ
2027を法として2017に合同な数は幾つあるか?
1000で割った余りを解答せよ
0822132人目の素数さん
垢版 |
2018/01/17(水) 16:12:08.13ID:YoDVUQg0
どう求めたの?
0824132人目の素数さん
垢版 |
2018/01/17(水) 21:44:13.29ID:EO7VHN63
>>822
コンピュータ
0825132人目の素数さん
垢版 |
2018/01/17(水) 21:51:44.14ID:ugLbTJqW
>>815
1を加算する操作をsとし、整数による加算をs^k、kによる減算をs^-kのように表現するとき、
±1±2±...±1013の形の式のうち解が整数nとなる式の個数は
Π(k=1→1013)(s^k+s^-k)…@を展開したときのs^nの係数に現れる。
2027を法とする演算を考えればよいので、s^2027=s^0とし、
このときのs^2017の係数を考えればそれが2017と合同な式の個数となる。これを求めればよい。
Π(m=0→1012)(s^(2^m)+s^-(2^m))…Aの形の式を考える。
s^(2^m),s^-(2^m) (0≦m≦1012) の各々に、s^k,s^-k (1≦k≦1013) のいずれかと同一のものが
ちょうど1つずつ存在する(1対1に対応する)ことから、Aは@の項を並び替えたものであり、@に等しい。
Aを展開するとs^-(2^1013-1)+s^-(2^1013-3)+...+s^-3+s^-1+s^1+s^3+...+s^(2^1013-1)…A'となる。
A'の項の総数は2^1013個であり、各項の指数が2ずつの等間隔に存在すること、2027が奇数であること、
2^1013+1が2027の倍数であることから、1≦k≦2026 の各々について s^k に等しい項は(2^1013+1)/2027個ある。
すなわちs^2017に等しい項の数は(2^1013+1)/2027個あり、これが求める係数である。
(なお、s^0=s^(2^1013+1)に等しい項の個数は他のs^kより1つ少ない)
(2^1013+1)/2027を10進数で表現すると300桁を超えるが、
1000の余りを求めればよいので2027×1000を法とする演算で2^1013+1を求め、
2027で割る方法をとれば計算量を減らすことができる。
計算は省略する。解は859。
※巡回群に詳しい方、補足がありましたらお願いします。
0826132人目の素数さん
垢版 |
2018/01/17(水) 21:55:00.34ID:ugLbTJqW
>>825
1行目ミスった
整数kによる加算をs^k、整数kによる減算をs^-kのように表現する
0827132人目の素数さん
垢版 |
2018/01/17(水) 22:03:36.43ID:qFKXYmDa
コンピューターおばあちゃん コンピューターおばあちゃん
イェーイイェーイ ぼーくら大好きさー
0829132人目の素数さん
垢版 |
2018/01/17(水) 23:22:58.51ID:EO7VHN63
>>825
お見事
2027は素数
x^2027=1で
Σx^(±1±2±...±1013)=(Σx^±1)(Σx^±2)...(Σx^±1013)=(x+x^2026)(x^2+x^2025)...(x^1013+x^1014)
ということね
そして上記の式のxのベキは2027の0以外の2026個で原始根のベキで表せるわけだけど
F_2027において2が原始根なのは確かにそうだとは確認したけど簡単に分かるの?
まあ2でなくても原始根ならいいけど原始根は探すの結構めんどくさい
0830132人目の素数さん
垢版 |
2018/01/17(水) 23:35:03.42ID:EO7VHN63
>>829
>2でなくても原始根ならいいけど
2じゃないと駄目か
±だから展開したとき2進法で考えるから-(2^1013-1)から2^1013-1まで2飛ばしで出てくるってことになる
3とかだと3進法ではそうもならないな
0831132人目の素数さん
垢版 |
2018/01/17(水) 23:59:13.48ID:ugLbTJqW
そう。2が原始根であることが言えればいい
位数が2027-1の約数であり、2027-1の素因数は2と1013なので、
2 と 2^2 と 2^1013 について 2027 を法として 1 と合同でないことを確認すればよい
0832132人目の素数さん
垢版 |
2018/01/18(木) 00:15:10.12ID:8rC65/QE
Oh wow guys Congratulations!!
It seems you got a right answer.
So I’ll show you my solutions.

Let p=2027 and observe that this is prime.
Let a_i for 0≦i≦p-1 be the number of the 2^2013 numbers which are i in modulo p.
Then,
N=Π[(p-1)/2, i=1]((ε^k)+(ε^(-k)))
=a_0+...+a_(p-1)ε^(p-1)
where ε=exp((2π/p)i).
Now, observe that
Π[p-1,i=1]((ε^k)+(ε^(-k)))
=NΠ[p-1,i=(p+1)/2]((ε^k)+(ε^(-k)))
=NΠ[p-1,i=(p+1)/2]((ε^(k-p))+(ε^(p-k)))
=NΠ[(p-1)/2,i=1]((ε^k)+(ε^(-k)))
=N^2

But,
Π[p-1,i=1]((ε^k)+(ε^(-k)))
=Π[p-1,i=1](ε^(2k)+1)=Π[p-1,i=1](1+ε^k)=1
where we use the fact that k→2k is bijective in ℤ/pℤ and 1+x+...+x^(p-1)
=Π_(1≦k≦p-1)(x-ε^k).
So N^2=1⇒N=±1.
So,
a_0+...+a_(p-1)ε^(p-1)=±1
⇒a_0±1=a_1=...=a_(p-1)=q
for some integer q.Then,
pq=a_0+...+a_(p-1)±1=2^((p-1)/2)±1.
Since q must be an integer
and 2^((p-1)/2)≡(2/p),
q=(2^1013-(2/2027))/2027
=((2^1013)+1)/2027≡859 (mod 1000).
0833132人目の素数さん
垢版 |
2018/01/18(木) 01:22:37.18ID:I6nQhhU/
>>831
なーるほどー
位数は1か2か1013か2026かしかないってことか
2^1013はキツそうだけど2^11=2048=21とか使うのかしらね
0834132人目の素数さん
垢版 |
2018/01/18(木) 02:12:14.89ID:BqMeO5gJ
>>833
2^1013の計算は多少手間だけど、工夫すれば短くできそう
例えばこう
2^1013≡2^(1008+5)≡2^(7・2・2・2・2・3・3+5)
≡((((((2^7)^2)^2)^2)^2)^3)^3・2^5
≡(((((128^2)^2)^2)^2)^3)^3・32
≡((((168^2)^2)^2)^3)^3・32
≡((((-154)^2)^2)^3)^3・32
≡(((-608)^2)^3)^3・32
≡(750^3)^3・32
≡(750^2・750)^3・32
≡(1021・750)^3・32
≡(-456)^3・32
≡(-456)^2・(-456・32)
≡(-845)・(-403)
≡-1 (mod 2027)
0835132人目の素数さん
垢版 |
2018/01/18(木) 02:47:01.58ID:3VMTZnuL
>>809-810

a=3A, c=3C とおくと、

AA +(A+1)^2 = CC,

(2A+1)^2 + 1 = 2CC  … ペル方程式

(A,C)=(0,1)
(A,C)が自然数解なら(A',C')=(3A+2C+1,4A+3C+2)も自然数解。

A_n ={(√2 +1)^(2n+1)-(√2 -1)^(2n+1)-2}/4,
C_n ={(√2 +1)^(2n+1)+(√2 -1)^(2n+1)}/(2√2),
0836132人目の素数さん
垢版 |
2018/01/18(木) 04:13:54.25ID:3VMTZnuL
>>835

   (A_n, C_n)
n=0 (0, 1)
n=1 (3, 5)
n=2 (20, 29)
n=3 (119, 169)
n=4 (696, 985)
n=5 (4059, 5741)
n=6 (23660, 33461)
n=7 (137903, 195025)
n=8 (803760, 1136689)
n=9 (4684659, 6625109)
n=10 (27304196, 38613965)
0837132人目の素数さん
垢版 |
2018/01/18(木) 15:27:22.81ID:FEilI+AF
全ての実数で定義されている実数関数 f に対し
B={x | limsup_y→x |f(y)-f(x)|/|y-x|<∞}と置く
R-Bが高々可算個の疎な閉集合で被覆されるならば
ある開区間で f はリプシッツ連続となることを示せ
ただし選択公理によるベールの被覆定理を仮定する
0839132人目の素数さん
垢版 |
2018/01/20(土) 12:43:59.72ID:urj88i9i
5×5の碁盤目状の道路があり、5件の家
A(0,1)、B(1,4)、C(2,0)、D(3,3)、E(4,2) がある。
https://i.imgur.com/pzdRfIv.jpg

この街に直線道路を1本引きたい。
5件からのマンハッタン距離の平方和が最小となる直線を求めよ。
0840132人目の素数さん
垢版 |
2018/01/20(土) 12:46:16.88ID:urj88i9i
言い方がマズかったかな。

  Aから直線道路までのマンハッタン距離の2乗
+ Bから直線道路までのマンハッタン距離の2乗
+ Cから直線道路までのマンハッタン距離の2乗
+ Dから直線道路までのマンハッタン距離の2乗
+ Eから直線道路までのマンハッタン距離の2乗

が最小となるような直線です。
0841132人目の素数さん
垢版 |
2018/01/20(土) 13:28:39.53ID:urj88i9i
ごめん、もう一度訂正。

  Aから直線道路までのx軸方向の移動距離の2乗+y軸方向の移動距離の2乗
+ Bから直線道路までのx軸方向の移動距離の2乗+y軸方向の移動距離の2乗
+ Cから直線道路までのx軸方向の移動距離の2乗+y軸方向の移動距離の2乗
+ Dから直線道路までのx軸方向の移動距離の2乗+y軸方向の移動距離の2乗
+ Eから直線道路までのx軸方向の移動距離の2乗+y軸方向の移動距離の2乗
0843132人目の素数さん
垢版 |
2018/01/21(日) 04:26:29.48ID:SUkk+U6n
>>839

点(x_a,y_a)から直線 y = mx+n までのM距離は、
x軸方向の移動距離 と y軸方向の移動距離 のうち小さい方、つまり
min{|y_a -m x_a -n|,|(y_a -m x_a -n)/m|}

|m|≦ 1 のとき |y_a -m x_a -n|,
|m|≧ 1 のとき |(y_a -m x_a -n)/m|,

y =(x+18)/10 または y=10x-18 のとき 距離の平方和 = 99/10
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況