>>135
> 「後者」がωとなるような(順序数としての)自然数は存在しない (**)
ωを可算無限個と書いても内容は変わらないですし上記のことは数当て戦略に必要です

>>141
> 任意の自然数nについても、必ず可算無限の後者が存在しますよ。
を言い換えると
無限数列の場合は決定番号(自然数)より後ろの可算無限個の項は全て代表元と一致する (***)

> L→∞を考えることができる
(**)が必要な理由は有限数列の項を増やして無限数列にする場合に有限回のステップで増やすことを要請するから
逆に「後者」がω(可算無限)となるような自然数が存在すれば順々に増やして無限回のステップで無限数列にできる

有限回のステップなので最後のステップは可算無限個の項を一度に加えることになる

> 「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」
であってrnを完全代表系から選んだ代表元とすると
(1) 有限個の項を加えることを有限回繰り替えす s1-r1, s2-r2, ... , sD-rD
(2) 最後のステップで可算無限個の0を一度に加えると s1-r1, s2-r2, ... , sD-rD, 0, 0, 0, ...

ある自然数Dがあってn > Dならば |(sn-rn) - 0|=0 と書けるからlim_{n→∞}(sn-rn) = 0となってsn-rnの
極限は0に収束し決定番号はD+1

つまり時枝記事で有限数列の長さの極限をとって無限数列にするということは有限数列 s1, s2, ... , sD の後ろに
代表元から得られる可算無限個の r(D+1), r(D+2), ... を加えた無限数列を得ることである
(代表元を1つ選び有限個の項の値を任意の値に変えても同じ無限数列を得ることができる)

箱の数を可算無限個に増やしても決定番号は同じようには増えず (***)もそのまま成り立つ