>>55 つづき
有限アーベル群[編集]
詳細は「有限アーベル群」を参照
整数全体のなす加法群の法 n に関する剰余類の成す巡回群 Z/nZ は有限アーベル群のもっとも単純な例として挙げることができるが、
逆に任意の有限アーベル群は適当な素数冪に対するこの形の有限巡回群の直和に同型であり、そのときそれら直和因子の位数は全体として一意に決定され、与えられた有限アーベル群の不変系 (complete system of invariants) と呼ばれる。
有限アーベル群の自己同型群はその不変系によって直接的に記述することができる。有限アーベル群の理論はフロベニウスとシュティッケルベルガー(英語版)の1879年の論文に始まり、のちに整理され主イデアル整域上の有限生成加群にまで一般化されて、線型代数学の重要な章を成すものとなった(単因子論)。
素数位数の任意の群は巡回群に同型であり、ゆえにアーベル群である。また、位数が素数の平方であるような任意の群はアーベル群となる[5]。
実は任意の素数 p に対して位数 p2 の群は、同型を除いて Z/p2Z と Z/pZ × Z/pZ のちょうど二種類しかない。

有限アーベル群の基本定理
任意の有限アーベル群 G は素冪位数の巡回群の直和に表される。
これは有限生成アーベル群の基本定理の特別の場合(階数 0 の場合)である。位数 mn の巡回群 Z/mnZ が Z/mZ と Z/nZ の直和に同型となるための必要十分条件は m と n が互いに素となることである(中国の剰余定理)。これにより任意の有限アーベル群 G が
{\displaystyle \bigoplus _{i=1}^{u}\mathbf {Z} /k_{i}\mathbf {Z} }
なるかたちの直和に同型となることが従うが、位数 ki に関しては標準的に二種類:
各数 k1, …, ku はそれぞれ適当な素数の冪である
k1 は k2 を割り切り、k2 は k3 を割り切り、… ku?1 は ku を割り切る
の仮定のうちの何れかを課すことで一意に定まる。

つづく