>>51 つづき
応用
調和解析
詳細は「有限アーベル群上の調和解析(フランス語版)」を参照
有限アーベル群は特筆すべき群指標を持ち、その指標群は自身に同型である。ゆえに、そのような群上の調和解析は単純で確立されていて、フーリエ変換や畳み込みを定義することができる。よく知られた結果として、パーシヴァルの等式、プランシュレルの定理やポワソン和公式などが挙げられる。

合同算術
代数的整数論で広く用いられる構造として、整数の合同類環 Z/pZ と特にその単数群 (Z/pZ)× がある。このアプローチは合同算術の基礎になっている。p が素数ならば、この単数群は位数 p ? 1 の巡回群であり、素数以外の場合でも有限アーベルであることは変わりない。
この構造は、フェルマーの小定理(や、その一般化であるオイラーの定理)のようなディオファントス方程式を解くのに利用できる。
有限アーベル群上の調和解析もまた数論に多くの応用を持つ。それらはガウスやルジャンドルらのような数学者が示した結果の現代的定式化に相当する。
ガウス和やガウス周期(フランス語版)もそれらを計算可能にする有限アーベル群の指標を用いて表すことができる。そのような方法は平方剰余の相互法則の証明の基本である。
ディリクレはガウスとルジャンドルの予想「既約合同類群 (Z/pZ)× の各類は無限個の素数を含む」に着目した。ディリクレは調和解析を用いて、こんにち算術級数定理と呼ばれるこの定理を証明し、ディリクレによる成果は解析数論の礎となった。

ガロワ理論
有限アーベル群はガロワ理論において特別な役割を持つ。アーベル?ルフィニの定理の帰結として、可換なガロワ群を持つ多項式は冪根によって解ける(逆はやや複雑で、ガロワ群が可解群となるのにアーベルであることは必要でない)。
そのような多項式の分解体はアーベル拡大、つまり拡大のガロワ群がアーベルである。この結果は、アーベル拡大とそのガロワ群に注目するものである。これは19世紀の数学者たちがクロネッカー?ヴェーバーの定理の証明に熱心であった理由である。
ガロワやクロネッカーとヴェーバーの発見よりもずっと以前に、ガウスは特定の場合「正17角形の定木とコンパスを用いた作図を求めるための、指数17の円分方程式」を扱ったが、この多項式のガロワ群がアーベルであることはこの方法の本質的な要素であった
(引用終り)