>>47 つづき

分類[編集]
単項イデアル整域上の有限生成加群の構造定理の特別な場合である有限生成アーベル群の基本定理 (fundamental theorem of finitely generated abelian groups) は(単項イデアル整域の場合と同様に)2通りに述べることができる。

同値性[編集]
これらのステートメントは中国剰余定理によって同値である。ここでそれが述べているのは、Z_m 〜 Z_j + Z_k であることと、j と k が互いに素で m = jk であることは同値である。
コメント[編集]
有限生成アーベル群は有限の階数として、上の n を持つ。一方でこの逆は正しくなく、有限の階数を持つが有限生成でないアーベル群はたくさんある。
この定理によって有限生成なアーベル群、特に位数が有限なアーベル群は完全に分類できる。そのため、これは群論において大変有用な定理である。これに対して、有限生成でないアーベル群に関しては、今でも研究が進められている。特に、階数が無限のアーベル群は非常に複雑になる。
もう少し一般化して、単項イデアル整域上の有限生成加群に対しても全く同様の定理が証明できる。
系[編集]
基本定理を別の言い方をすると、有限生成アーベル群はそれぞれが同型を除いて一意であるような有限ランクの自由アーベル群と有限アーベル群の直和である。有限アーベル群はちょうど G の捩れ部分群である。G のランクは G の torsion-free 部分のランクとして定義される。これはちょうど上の公式の数 n である。
基本定理の系は、すべてのねじれのない(英語版)有限生成アーベル群は自由アーベル群であるというものである。有限生成の条件はここで本質的である: Q はねじれがないが自由アーベルでない。
有限生成アーベル群のすべての部分群と商群は再び有限生成アーベル群である。群準同型とともに有限生成アーベル群は、アーベル群の圏のセール部分圏であるアーベル圏をなす。
有限生成でないアーベル群[編集]
有限ランクのすべてのアーベル群が有限生成というわけではないことに注意せよ。ランク 1 の群 Q は1つの反例であり、Z_2 の可算無限個のコピーの直和によって与えられるランク 0 の群は別の例である。
関連項目[編集]
ジョルダン-ヘルダーの定理は非アーベルへの一般化である

(引用終り)