X



トップページ数学
1002コメント471KB
奇数の完全数の有無について [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
0171132人目の素数さん
垢版 |
2018/03/01(木) 10:57:02.36ID:AGXkXS1h
>>170 つづき
a-c≡2k-2h (mod p+1)
a+c≡0 (mod p+1)


奇数をr、整数をs,tとして
r=k-h
a-c=(p+1)s+2r
a+c=(p+1)t

a+c=(p^n+1)c=(p+1)(p^(n-1)-p^(n-2)+p^(n-3)-…+1)c
となり、p^(n-1)-p^(n-2)+p^(n-3)-…+1は2で割れないから
tは奇数となる。

2a=(p+1)(s+t)+2r
a=(p+1)(s+t)/2+r …D
rとtが奇数だから、s+tは偶数になるのでsは奇数となる。

2c=(p+1)(t-s)-2r
c=(p+1)(t-s)/2-r …E

c=kp+hから
(p+1)(t-s)/2-r=kp+h
(p+1)(t-s)=2kp+2h+2r
(p+1)(t-s)=2kp+2k …F
(s-t+2k)p=-2k-s+t
となるが、ここで
a-c=a+c-2c=(p+1)t-2(kp+h)
=(p+1)(t-2k)+2k-2h
r=k-hだから
s=t-2k
となり
(s-t+2k)p=0
よって、pは不定になる。

a=gp-g+h+kから
(p+1)(s+t)/2+r=gp-g+h+k
(p+1)(s+t)/2+k-h=gp-g+h+k
(p+1)(s+t)/2=gp-g+2h
(p+1)(s+t)=2gp-2g+4h …G
(p+1)(s+t)=2g(p-1)+4h
(p+1)(s+t)/4=g(p-1)/2+h …H

a=(p+1)(s+t)/2+k-h
(a-k+h)/2=(p+1)(s+t)/4
a≡k-h (mod p-1)より、左辺は偶数で、(p+1)/2は奇数であるから
(s+t)/2は偶数となる。

これにより、Hの左辺は偶数になり、hは偶数になる。
よって、条件(1)、(2)によりgは偶数、kは奇数になる。

式Gから式Fを辺々引くと
2(p+1)s=2(g-k)p-2g+4h-2k
(p+1)s=(g-k)p-g+2h-k
(s-g+k)(p+1)=-2g+2h
(s-g+k)(p+1)/2=-g+h
(s-g+k)(p+1)/2≡-g+h≡0 (mod p+1)
∴g≡h (mod p+1)
0172132人目の素数さん
垢版 |
2018/03/01(木) 10:59:57.76ID:AGXkXS1h
>>171 つづき
整数をwとして
g=(p+1)w+h
と表され
a=gp-g+h+k=((p+1)w+h)p-((p+1)w+h)+h+k
となるが、Dよりaはpの一次式で表さなければならないから
w=0
g=h
でなければらない。


a=gp+k
b=gp+g
c=kp+g

a-c=(g-k)p+k-g=(p-1)(g-k)
a+c=(g+k)p+g+k=(p+1)(g+k)

(a-c)/(g-k)+1=(a+c)/(g+k)-1
(g+k)(a-c)+(g-k)(g+k)=(g-k)(a+c)-(g-k)(g+k)
(g-k)(a+c)-(g+k)(a-c)=2(g-k)(g+k)
(g-k-(g+k))a+(g-k+g+k)c=2(g-k)(g+k)
-2ka+2gc=2(g-k)(g+k)
-ka+gc=(g-k)(g+k)
ka-gc=-(g-k)(g+k)

(kp^n-g)c=-(g-k)(g+k)

g-k=c(p^(n-1)+…+1)より
u=p^(n-1)+…+1とすると
g-k=cu

(kp^n-g)c=-cu(g+k)
kp^n-g=-u(g+k)
(u-1)g=-kp^n-uk

u≡n (mod p-1)
g≡n(h+k)+k (mod p-1)
から
(u-1)g≡(n-1)(n(h+k)+k)≡n(n-1)(h+k)+(n-1)k (mod p-1)
-kp^n-uk≡-k-nk≡-(n+1)k (mod p-1)

n(n-1)(h+k)+(n-1)k+(n+1)k≡0 (mod p-1)
n(n-1)(h+k)+2nk≡0 (mod p-1)
n(n-1)h+n(n+1)k≡0 (mod p-1)

整数をqとしてp=4q+1だから、整数をvとして
n(n-1)h+n(n+1)k=4qv

k=(r+t)/2
h=(t-r)/2
より

n(n-1)(t-r)+n(n+1)(r+t)=8qv
tn^2+rn=4qv
tn^2+rn=4qv
n(nt+r)/2=2qv
0173132人目の素数さん
垢版 |
2018/03/01(木) 11:00:36.04ID:AGXkXS1h
>>172 つづき
整数をw,zとして
t=2w+1
r=2z+1とすると
(nt+r)/2=((4m+1)(2w+1)+2z+1)/2
=(8mw+4m+2w+2z+2)/2
=4mw+2m+w+z+1

w+z=(t+r)/2-1
=k-1
だから
(nt+r)/2=4mw+2m+k
となり、kは奇数であるから(nt+r)/2は奇数となる。
よって、n(nt+r)/2は奇数となるから矛盾がおきる。

以上から、奇数の完全数は存在しない。
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況