>>104 つづき

その一方で、大学院生の私にはもう1 つ興味を引かれることがありました。そ
して、ある意味、それがその後の私の研究につながっていくところもあったので
す。ところで、物理学が専門でない皆さんのために、ここで少しご説明しておかな
ければなりません。それは、理論物理学者は自然の法則を理解しようとする一方
で、様々な状況で方程式を解き、今後何が起こるのかを予想しようとしているとい
うことです。理論物理学のこの2 つの側面は、必ずしもはっきりと区別できるわ
けではありません。たとえば、自然の法則を解き明かし、その法則による予測を明
らかにできなければ、どれが正しい法則なのかを理解することはできません。とこ
ろが実際に物理学者が行っているのは、ほとんどの場合、少なくとも原理的には適
切な方程式が明らかな状況で、物質の振る舞いを理解しようとすることです。この
2 つの側面を同時に実践するのは、口で言うほど簡単なことではありません。一例
を挙げれば、電子や原子核の振る舞いを説明するシュレーディンガー方程式につい
て知っているということと、そうした方程式をいくつも解いて一本の銅線の振る舞
いについて理解することとは、別問題だからです。

素粒子物理学者として、基本的に私の目標とするところは、そうした基礎方程式
が何なのかを理解することでした。ところが、標準模型の登場によって新たな状況
が生まれたのです。私が大学院で研究を始めたちょうどその頃、全く新しい基礎方
程式がいくつか確立されつつあり、中には理解することがきわめて難しいものもあ
りました。特に、標準模型では、陽子、中性子、パイ中間子、そしてそれ以外の相
互作用を行う粒子はクォークで形成されているものの、どのクォークも観察できな
いとされていました。この矛盾を解消するためには、クォークが「閉じ込められて
いる」、つまり、どんなにエネルギーを費やしてもクォークを取り出すことはでき
ないと考えざるをえませんでした。クォークの閉じ込めを説明しうると思われてい
た標準模型の方程式には、わかりにくく、しかも解くのが難しいという問題点があ
りました。そのため、クォークの閉じ込めが本当に起こるのかどうかは、なかなか
解明することができなかったのです。

つづく