X



トップページ数学
47コメント14KB
【最適化】数理計画法【OR】 [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2016/09/14(水) 00:24:01.09ID:OxFXFs2X
いろいろ情報交換しましょう。
0002132人目の素数さん
垢版 |
2016/09/14(水) 00:43:22.15ID:eztVb8FO
増田君、私に意見を言うのは10年早いよ
0004◆2VB8wsVUoo
垢版 |
2016/09/14(水) 04:17:16.57ID:H6bVav0z


>287 名前:132人目の素数さん :2016/09/13(火) 10:52:30.44 ID:rMlOB3oq
> 痴漢でもなんでも、業績を上げていれば世間はほっておかない。
> 哲也がヤケッパチになったのは、自分がただの有象無象の一人に過ぎないことを思い知ったから。
> 痴漢行為はヤケッパチになった結果としての所業だろう。
>
0015132人目の素数さん
垢版 |
2016/09/14(水) 22:45:55.84ID:eztVb8FO
牟岐線への最短経路を答えよ
0016◆2VB8wsVUoo
垢版 |
2016/09/14(水) 23:01:34.21ID:H6bVav0z
そんなモン、行ったらシマイや。難しい事なんてアラヘン。拘置所へ行く
んはちょっと厄介やけんどナ。

ケケケ¥
0017132人目の素数さん
垢版 |
2016/12/31(土) 13:41:27.56ID:Pwa0VmPJ
この分野って非線形計画法のように微分積分を使うものやら、線形計画法のように代数的なもの、
ナップサック問題のようにアルゴリズム的なものやら、ごちゃ混ぜですね。
0019132人目の素数さん
垢版 |
2017/01/01(日) 19:13:25.43ID:wJl9t2iX
ダイクストラのアルゴリズムの正しさの証明が載っている本で
一番分かりやすい本を教えてください。
0020132人目の素数さん
垢版 |
2017/01/04(水) 13:21:43.81ID:eC76K/wi
なんか正しさの証明を書いてみると簡単なことなのに長くなりますね。
もし、間違っていたら指摘してください。

http://imgur.com/PDx2vmZ.jpg
http://imgur.com/DbMiSz5.jpg

ダイクストラのアルゴリズムは↑のものとします。

節点 s から、ある節点 i への最短経路が存在するとき、その長さを td(i) で表わすことにする。
i への経路、したがって最短経路が存在しないときには、 td(i) = ∞ とする。

ステップ(1)で選ばれる節点 v ∈ V - S に対して、 d(v) = td(v) が成り立つことを数学的帰納法により、以下で証明する。

最初にステップ(1)が実行されるときを考える。
明らかに、 d(s) = td(s) = 0 が成り立つ。

k ≧ 1 とする。
第 1 回目から第 k 回目にステップ(1)が実行されるときに、いつもステップ(1)で選ばれる節点 v ∈ V - S に対して、
d(v) = td(v) が成り立つと仮定する。

第 (k+1) 回目にステップ(1)が実行されるときを考える。
このとき、明らかに #S = k であり、 ∀i ∈ S に対して、 d(i) = td(i) が成り立つ。
第 (k+1) 回目にステップ(1)が実行されるときに選ばれる節点を v ∈ V - S とする。
d(v) = ∞ である場合と d(v) ≠ ∞ である場合で場合分けして考える。

(1) d(v) = ∞ である場合。
td(v) ≠ d(v) = ∞ と仮定して矛盾を導く。
td(v) ≠ ∞ であるから、節点 s から節点 v への経路 s = v_0 → v_1 → … → v_(l-1) → v_l = v が存在する。
明らかに、 td(v_0), td(v_1), …, td(v_(l-1)), td(v_l) ≠ ∞ である。
v_0 ∈ S, v_l ∈ V - S であるから、 v_i ∈ S, v_(i+1) ∈ V - S となるような i が存在する。
∀j ∈ V - S に対して、 d(j) = ∞ であるから、 d(v_(i+1)) = ∞ である。また、 v_i ∈ S であるから、
d(v_i) = td(v_i) ≠ ∞ が成り立つ。
v_i がステップ(2)で S に追加されたときのことを考えれば分かるように、 (v_i, v_(i+1)) ∈ E かつ v_(i+1) ∈ V - S であるから、
d(v_(i+1)) = ∞ ということはない。これは矛盾である。
よって、 d(v) = td(v) = ∞ が成り立つ。
0021132人目の素数さん
垢版 |
2017/01/04(水) 13:21:59.38ID:eC76K/wi
(2) d(v) ≠ ∞ である場合。
td(v) ≠ d(v) と仮定して矛盾を導く。
ステップ(2)を考えれば明らかなように、 d(v) ≠ ∞ であるから、節点 s から節点 v への
最短経路 s = v_0 → v_1 → … → v_(l-1) → v_l = v が存在する。
よって、 td(v) ≠ ∞ である。
仮定により、 td(v) ≠ d(v) であるから、 td(v) < d(v) が成り立つ。
v_0 ∈ S, v_l ∈ V - S であるから、 v_i ∈ S, v_(i+1) ∈ V - S となるような i が存在する。
td(v_(i+1)) < d(v_(i+1)) である。なぜなら、もし、そうでないと仮定すると、 d(v_(i+1)) = td(v_(i+1)) であるが、
td(v_(i+1)) ≦ td(v) < d(v) であるから、 d(v_(i+1)) < d(v) となってしまい、ステップ(1)での v の
選ばれ方に矛盾するからである。
v_i ∈ S であるから、 d(v_i) = td(v_i) である。
v_i がステップ(2)で S に追加されたときのことを考えれば分かるように、 (v_i, v_(i+1)) ∈ E かつ v_(i+1) ∈ V - S であるから、
d(v_i) + a_(v_i v_(i+1)) ≧ d(v_(i+1)) である。
一方、明らかに、 td(v_i) + a_(v_i v_(i+1)) = td(v_(i+1)) であるから、
td(v_(i+1)) = td(v_i) + a_(v_i v_(i+1)) = d(v_i) + a_(v_i v_(i+1)) ≧ d(v_(i+1)) となるが、これは矛盾である。
よって、 td(v) = d(v) が成り立つ。

以上より、第 (k+1) 回目にステップ(1)が実行されるときにも、ステップ(1)で選ばれる節点 v ∈ V - S に対して、
d(v) = td(v) が成り立つ。

S に追加される節点はすべて、ステップ(1)で選ばれた 節点 v ∈ V - S であり、一度 S に追加された節点 v の d(v) はそれ以後、
変更されないから、ステップ(1)でアルゴリズムが終了したとき、 ∀i ∈ S = V に対して、 d(i) = td(i) が成り立つ。
0022132人目の素数さん
垢版 |
2017/01/04(水) 19:24:01.01ID:eC76K/wi
Lec 17 | MIT 6.046J / 18.410J Introduction to Algorithms (SMA 5503), Fall 2005
https://youtu.be/xhG2DyCX3uA

Erik DemaineはMITの歴史上最年少で教授になったという天才だそうですね。

Erik Demaineの2005年のダイクストラのアルゴリズムについての講義の要約について書きます。

ダイクストラのアルゴリズム:

01: d[s] ← 0
02: for each v ∈ V - {s}:
03: ■■d[v] ← ∞
04: S ← Φ
05: Q ← V
06: while Q ≠ Φ:
07: ■■u ← ExtractMin(Q)
08: S ← S ∪ {u}
09: for each v ∈ Adj[u]:
10: ■■if d[v] > d[u] + w(u, v):
11: ■■■■d[v] ← d[u] + w(u, v)
0023132人目の素数さん
垢版 |
2017/01/04(水) 19:24:19.38ID:eC76K/wi
Correctness I:

d[v] の初期化の直後、およびLine 11の直後において、
すべての v ∈ V に対して、 d[v] ≧ δ(s, v) が
成り立つ。

証明:
d[v] の初期化の直後には、
d[s] = 0 かつすべての v ∈ S - {v} に対して、d[v] = ∞
が成り立っている。
δ(s, s) = 0 かつすべての v ∈ S に対して、 δ(s, v) ≦ ∞
であるから、d[v] の初期化の直後には、
すべての v ∈ V に対して、 d[v] ≧ δ(s, v) が確かに
成り立っている。

Line 11の直後において、すべての v ∈ V に対して、
d[v] ≧ δ(s, v) が成り立つことを背理法により示す。

Line 11の直後において、 d[v] ≧ δ(s, v) が
成り立たないような v ∈ V が存在するとする。
v をそのような点の中で、最初の点とする。

d[v] < δ(s, v)

d[v] < δ(s, v) ≦ ∞ であるから、
ダイクストラのアルゴリズムのLine 11は少なくとも1回は
実行されているはずである。そのような最後の実行を

d[v] ← d[u] + w(u, v)

とすると、

d[u] + w(u, v) = d[v] < δ(s, v)

が成り立つ。

一方、 d[u] ≧ δ(s, u) であるから、

d[u] + w(u, v) ≧ δ(s, u) + w(u, v)
≧ δ(s, u) + δ(u, v)
≧ δ(s, v)

が成り立つが、これは矛盾である。
0024132人目の素数さん
垢版 |
2017/01/04(水) 19:24:33.77ID:eC76K/wi
Correctness Lemma:
s → … → u → v を s から v への一つの最短路とする。
d[u] = δ(s, u) であるとする。

このとき、Line10-11を実行すると、

d[v] = δ(s, v)

が成り立つ。

証明:
δ(s, v) = w(s → … → u) + w(u, v)
= δ(s, u) + w(u, v)
Correctness Iより、 d[v] ≧ δ(s, v)

(1)Line10-11の実行前に、 d[v] = δ(s, v) である場合。
Line10-11の実行後も d[v] = δ(s, v) である。

(2)Line10-11の実行前に、 d[v] > δ(s, v) である場合。
d[v] > δ(s, v) = δ(s, u) + w(u, v) = d[u] + w(u, v)
Line10-11の実行後は、 d[v] = d[u] + w(u, v) = δ(s, v)
となる。
0025132人目の素数さん
垢版 |
2017/01/04(水) 19:24:47.91ID:eC76K/wi
Correctness II:
ダイクストラのアルゴリズムが終了したとき、
すべての v ∈ V に対して、 d[v] = δ(s, v) が成り立つ。

証明:
d[v] は v が S に追加された後は、不変である。
よって、 v が S に追加されたときに、
d[v] = δ(s, v) であることを示せばよい。

背理法で示す。
v が S に追加されたときに、 d[v] ≠ δ(s, v) であるような
v ∈ V が存在すると仮定する。
u をそのような点の中で、最初に S に追加された点とする:
d[u] ≠ δ(s, u)
Correctness Iより、
d[u] > δ(s, u)

今、 u が S に追加される直前の状況を考えることにする。
u はまだ S に追加されていないから、 u ∈ Q である。
p を s から u への一つの最短路とすると、 w(p) = δ(s, u) である。
s ∈ S, u ∈ Q であるから、 p 上の辺 (x, y) で x ∈ S, y ∈ Q となる
ような辺が存在する。そのような辺の一つを (x, y) とする。
すると、 p は以下のようになる。
p : s → … → x → y → … → u
x ∈ S であるから、 u に関する仮定より、
d[x] = δ(s, x) が成り立つ。また、明らかに、
s → … → x → y は s から y への一つの最短路であるから、
Correctness Lemmaより、 d[y] = δ(s, y) が成り立つ。
明らかに、 δ(s, y) ≦ δ(s, u) であるから、
d[y] ≦ δ(s, y)
また、Line07を見れば分かるように、
d[u] ≦ d[y] である。
よって、

d[u] ≦ δ(s, u) となるが、これは矛盾である。
0026132人目の素数さん
垢版 |
2017/01/05(木) 07:20:11.28ID:shAkS+r3
線形計画法の本でおすすめの本は何ですか?
0037132人目の素数さん
垢版 |
2017/02/27(月) 09:14:25.50ID:aacoE6Vv
age
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況