X



トップページ数学
1002コメント299KB

微積と線形代数のスレ2 [転載禁止]©2ch.net

■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2015/07/16(木) 10:27:27.09ID:Z6msCJAT
微積と線形代数のスレ
0058132人目の素数さん
垢版 |
2015/07/17(金) 08:34:53.63ID:cv3IHhUf
>>37の指摘なんぞは全く間違っている。
ならば>>37の反例を挙げてくれ
s 個の線形独立なベクトルと、この s 個のベクトルの線形結合で表される n-s 個のベクトル
合計 n 個のベクトルのうち線形独立なベクトルが s より大きくなる例を
0059132人目の素数さん
垢版 |
2015/07/17(金) 09:08:58.22ID:L33oQcYC
>>58
日本語が全く読めてないワロタww

>>37は「証明の必要がなく自明だ」という意見なのであり、それに対して俺は

「 その指摘は間違っている。決して自明ではなく、証明が必要であり、
 具体的な証明は>>56->>57のようになっていて、Bの話に肉薄していて、
 循環論法になりがちで危ない」

と言っているのである。
0060132人目の素数さん
垢版 |
2015/07/17(金) 09:26:14.23ID:L33oQcYC
しかし、なんでこうも>>58みたいな人間が次から次へと沸いてくるのかね。
>>27の設定のもとで

「一次独立なベクトルの個数の最大値がsである」

ということそのものは、疑いようのない事実である。
しかし、ここで問題となっているのは、そのことが

「自明かどうか」

という話である。松坂君は「自明ではなく、証明が必要だ」と言っているのであり、
一方の>>37は「自明であり、証明の必要はない」と言っているのである。
その流れで>>56-57を読んでいるはずの人間が、どうして>>58のようなトンデモ解釈に走るのか、
不思議でたまらない。普通に考えて、>>56にある「>>37の指摘は間違っている」とは

>>37の『自明である』という意見は間違いであり、実際には自明ではなく、証明が必要だ」

という意味にしか読めないだろう。
0062132人目の素数さん
垢版 |
2015/07/17(金) 12:14:46.61ID:G0pewZyf
教科書がおかしい君
「線形独立な極大部分集合」
って意味分かるか?
0064132人目の素数さん
垢版 |
2015/07/17(金) 14:18:57.27ID:syGf8J38
>>62

>>56 も言ってることだが、質問者は
その「極大」が基底ベクトルの取り方に依らない
ことが自明かどうかを問題にしてるんだろう?

「自明」というか、「既習」でいいと思うんだがねえ。
基底の概念が入ってる人なら、そこは解ってないと。
本の適切な場所に記述が無かったのかな?
0066132人目の素数さん
垢版 |
2015/07/17(金) 14:39:36.95ID:SQMuFsYd
齋藤の線型代数の中の「単因子とジョルダン標準形」の章ってまともなの?
単因子って必要なん?
0067132人目の素数さん
垢版 |
2015/07/17(金) 14:42:16.95ID:syGf8J38
>>46
そこに説明を添えたければ、こうすりゃいいけど…

行列Aが、ある左基本変形P1では単位行列Eとなり、
別の左基本変形P2では階数落ちの行列Bになるとする。
(P1)A=E,
(P2)A=B だから、行列式をとって
(detP1)(detA)=1, detP1≠0,
(detP2)(detA)=0, detP2≠0.
これは矛盾。よって、Aに対する
やりかけの掃き出し法が途中で破綻すれば、
他の手順の掃き出し法が完遂できることは無い。

でもね、こんなの自明でしょ。
いちいちこんなとこまで書いてたら、本が無闇に
厚くなって、書くほうも読むほうもかなわない。
ある程度の行間は、自分で埋めて読まないと。
0068132人目の素数さん
垢版 |
2015/07/17(金) 14:44:57.32ID:qCNEylYW
斎藤正彦著『線型代数入門』を読んでいます。

エルミート行列の特徴づけとして、

p.63に「任意のベクトル x に対して、 (Ax, y) = (x, Ay)が成り立つことにほかならない。」

と書かれていますがおかしいですよね。

「任意のベクトル x および任意のベクトル y に対して、 (Ax, y) = (x, Ay)が成り立つことにほかならない。」

としなければなりませんよね。

斎藤正彦著『斎藤正彦 線型代数学』を読んでいます。

p.75に「任意の x ∈ C^n に対して (Ax|x) = (x|Ax) が成りたつことにほかならない。」

と書かれていますがおかしいですよね。

「任意の x ∈ C^n、 y ∈ C^n に対して (Ax|y) = (x|Ay) が成りたつことにほかならない。」

としなければなりませんよね。
0069132人目の素数さん
垢版 |
2015/07/17(金) 15:06:33.91ID:2ktSsiMI
>>68
全然おかしく無い。
yを定数と見ているだけ。
おまえ任意定数って知らんの?
厳密にやりたきゃ、開論理式、閉論理式とかお勉強することになるが…脳味噌爆発するだろw

学力の無いのが独学すると嵌る見本だな。
0070132人目の素数さん
垢版 |
2015/07/17(金) 15:22:31.20ID:Q1OXGko5
数学的読解力がエントリーレベルの人は、もっと簡単な本を読ま無いと駄目だよ。
東大系のテキストはその手の人が読むことを想定して無いから。
松本の「多様体入門」って例外もあるけど。
0071132人目の素数さん
垢版 |
2015/07/17(金) 16:06:17.16ID:U4KFebqL
松坂君はニートかもよ、一日これに費やしてようだし、授業を受けた気配ないし
0072132人目の素数さん
垢版 |
2015/07/17(金) 16:33:53.77ID:83LA8UKv
松坂君はなんで線型代数しかやらないの?
もっと先の数学をやろうとは思わないの?
0073132人目の素数さん
垢版 |
2015/07/17(金) 16:42:22.83ID:MzY0rPxB
松坂君の本職は微積分でしょ
副業の線型代数だとキレがない
0076132人目の素数さん
垢版 |
2015/07/17(金) 17:46:51.14ID:RaxDXGE2
>>28
>t>s のとき、
>s個のベクトルの一次結合であらわされたt個のベクトルは一次従属になりますから。
本は持っていないが、文の解釈が正しければ、次のように示せる。

s、tは両方共に任意のt>sなるような2つの正整数として考えてよい。
両方共に或るt>sなる2つの正整数s、tが存在して、何れも或る
一次独立なs個のベクトルa_1,…,a_s、及び何れも或るst個の0でないスカラー
λ_1≠0,…,λ_s≠0,………,λ_{s(t-1)+1}≠0,…,λ_{st}≠0
に対して、何れも或るt個の一次独立なベクトルb_1,…,b_s,…,b_tが定まり、
Σ(λ_i・a_i)=b_1 1≦i≦s、
………、
Σ(λ_i・a_i)=b_s s(s-1)+1≦i≦s^2、
………、
Σ(λ_i・a_i)=b_t s(t-1)+1≦i≦st
とすると、Σ(λ_j・a_j)=Σb_j  1≦j≦t。ここで、左辺について、
各j=1,…,tに対してベクトルa_jのスカラーの和をμ_jとする。
{a_1,…,a_s}を基底とする線型空間の係数体をR、
V_1を{a_1,…,a_s}を基底とする体R上の線型空間とする。
{b_1,…,b_t}を基底とする線型空間の係数体をK、
V_2を{b_1,…,b_t}を基底とする体K上の線型空間とする。
a=Σ(μ_j・a_j) 1≦j≦t とおき、b=Σb_j 1≦j≦t とおく。
0077132人目の素数さん
垢版 |
2015/07/17(金) 17:50:56.67ID:RaxDXGE2
>>28
(>>76の続き)
すると、各i=1,…,stに対してλ_i∈Rだから、各j=1,…,tに対してμ_j∈R
であり、そしてΣ(μ_j・a_j)=Σb_j 1≦j≦tから、a=b。
よって、線型空間の定義から、R∩K≠φであり、RとKの両方に含まれる最小の環Qが存在する。
a_1、…、a_sはR上一次独立、かつb_1、…、b_s、…、b_tはK上一次独立であるから、
R、K⊃Qからa_1、…、a_sはQ上一次独立、かつb_1、…、b_s、…、b_tはQ上一次独立である。
また、a∈V_1、b∈V_2から、a=b=uとおくと、u∈V_1∩V_2。
ところで、V_1∩V_2⊂V_1からu∈V_1であり、V_1∩V_2⊂V_2からu∈V_2である。
更にs=dim(V_1)、t=dim(V_2)だから、s<tからdim(V_1)<dim(V_2)。
従って、s=dim(V_1)≧1から、或る左Q-加群Vが存在してV⊂V_1∩V_2
であり、r=dimVとおくと1≦r≦dim(V_1)<dim(V_2)。
故に、何れも或るベクトルv∈V、v_1∈V_1、v_2∈V_2\{0}が存在して、
a=v+v_1、b=v+v_2。ここで、a、v_1∈V_1、V_1∩V_2⊂V_1だから、
v+v_1∈V_1∩V_2即ちv+v_1∈V_1からv=a−v_1であり、v∈V_1。
また、同様に、b、v_2∈V_2、V_1∩V_2⊂V_2だから、v+v_2∈V_1∩V_2
即ちv+v_2∈V_2からv=b−v_2であり、v∈V_2。従って、v∈V_1∩V_2。
a=bからv+v_1=v+v_2∈V_1∩V_2だから、同様に、v+v_1=v+v_2∈V_1、V_2
から、各k=1,2に対してv_k∈V_1、V_2であり、v_k∈V_1∩V_2。
0078132人目の素数さん
垢版 |
2015/07/17(金) 17:53:04.19ID:RaxDXGE2
>>28
(>>77の続き)
従ってv_1=v_2∈V_1∩V_2であり、v_2≠0からv_1≠0。
V_1は{a_1,…,a_s}を基底とする体R上の次元sの線型空間だから、r≦dim(V_1)=sから
r<sであり、何れも或るi=r+1,…,sに対してλ_i∈R\Q、a_i∈V_1\Vを
両方共に満たすとすることが出来る。このとき、v_1=Σ(λ_i・a_i) r+1≦i≦sとなる。
同様に、V_2は{b_1,…,b_t}を基底とする体K上の次元tの線型空間だから、
r<tから、何れも或るj=r+1,…,tに対して1∈K\Q、b_j∈V_2\Vを満たす
とすることが出来る。このとき、v_2=Σ(1・b_j) r+1≦j≦tとなる。
従って、v_1=v_2から、Σ(λ_i・a_i)=Σ(1・b_j)≠0  r+1≦i≦s、r+1≦j≦t。
しかし、線型空間V_1の係数体R、線型空間V_2の係数体K、及び環QはR、K⊃Qを満たし、
1∈K、Rから環Qは単位元1を持つから、1∈Qとなって、これは1∈K\Qとしたことに反し矛盾する。




まあ、最初に行列論やっているんだから、行列のところで
列ベクトルやその計算は行列の例として出て来る筈で、上のようにしなくても
a_i、i=1,…,s、b_j=1,…,tは列ベクトルになって
a_iとb_jは同じ形の列ベクトルになるのはすぐ分かると思うけど。
0079132人目の素数さん
垢版 |
2015/07/17(金) 17:54:07.46ID:6nAZSO89
本物の後藤さんっぽい
0080132人目の素数さん
垢版 |
2015/07/17(金) 18:40:06.98ID:Jh0bOtye
後藤爺さんは脳味噌に・・が湧いてるのか、「意識がが高い」松坂君とのやりとりは見もの
0081132人目の素数さん
垢版 |
2015/07/17(金) 19:27:20.06ID:cv3IHhUf
>>24
>『斎藤正彦 線型代数学』では線型空間の章よりずっと前の行列論のところで同じことを述べています。

『斎藤正彦 線型代数学』は知らないが、『線型代数入門』では「行列」の章で
「未知数の数が方程式の数より大きい斉次方程式系は少なくとも一つの非自明解を持つ。」
という命題を扱っており、線型空間の章における
「K^n において n 個より多くのベクトルは線型従属である」という命題はこれの
言い換えに過ぎないから、前者の命題を知ってればほぼ自明となるんだが、
『斎藤正彦 線型代数学』の行列論では連立一次方程式論を扱っていないということか?
それとも言い換えと気付かない程度の学力ということなのか?
0086132人目の素数さん
垢版 |
2015/07/17(金) 22:44:46.92ID:rPvmZJrc
種も仕掛けもあります
0088132人目の素数さん
垢版 |
2015/07/17(金) 22:48:50.41ID:SpODBTzj
デビュー曲は ∫dx/x だっけ?
0090132人目の素数さん
垢版 |
2015/07/17(金) 22:52:53.10ID:SpODBTzj
あんまり変わり映えしないな
0091132人目の素数さん
垢版 |
2015/07/18(土) 17:37:01.67ID:SXTmQrjl
足助太郎著『線型代数学』を読んでいます。

参考文献に伊理正夫著『一般線形代数』が入門書として紹介されています。
『一般線形代数』が入門書ということになると線形代数の入門用でない本
などというものは存在するのでしょうか?
0094132人目の素数さん
垢版 |
2015/07/18(土) 18:32:19.80ID:pOXRH4Gh
今、雪江「代数学1」を読んでます。さっそく誤りをみつけてしまました。40ページ下から一行目
φ(x)ですよね。ひどいですね。
0098132人目の素数さん
垢版 |
2015/07/18(土) 22:27:00.45ID:SXTmQrjl
2次の直行行列をすべて求めよ。

A = ((a, c)^T, (b, d)^T) とする。 A の2つの列ベクトル、2つの行ベクトルはそれぞれ正規直交系であるから、
a^2 + b^2 = 1,
d^2 + b^2 = 1,
a^2 + c^2 = 1,
d^2 + c^2 = 1
だから
d = ±a,
b = ±c

a^2 + c^2 = 1 だから、ある θ をえらぶと a = cosθ, c = sinθ

さらに a*b + c*d = 0, a*c + b*d = 0 から、
d = a なら b = -c で
A = ((cosθ, sinθ)^T, (-sinθ, cosθ)^T)

d = -a なら b = c で
A = ((cosθ, sinθ)^T, (sinθ, -cosθ)^T)
0101132人目の素数さん
垢版 |
2015/07/18(土) 22:49:52.32ID:5C0SnurY
A = ((sinθ, cosθ)^T, (-cosθ, sinθ)^T) は?
他にも一杯ありそうだね、さあどうする?
0102132人目の素数さん
垢版 |
2015/07/18(土) 22:56:56.06ID:SXTmQrjl
2次の直行行列をすべて求めよ。

A = ((a, c)^T, (b, d)^T) を直交行列とする。

A * A^T = E

が成り立つから

a^2 + b^2 = 1
c^2 + d^2 = 1
a*c + b*d = 0

したがって、

φ、θを実数として、

a = cosφ
b = sinφ

c = cosθ
d = sinθ


と書ける。

a*c + b*d = 0 だから
cos(φ-θ) = cosφ*cosθ + sinφ*sinθ = 0 でなければならない。
よって、

φ-θ = π/2 + n*π(n ∈ Z)

と書ける。
0103132人目の素数さん
垢版 |
2015/07/18(土) 22:57:30.22ID:SXTmQrjl
したがって、

A = ((-sinθ, cosθ)^T, (cosθ, sinθ)^T)
または、
A = ((sinθ, cosθ)^T, (-cosθ, sinθ)^T)

と書ける。

逆に、 θ を任意の実数とすると明らかに
A = ((-sinθ, cosθ)^T, (cosθ, sinθ)^T)
および、
A = ((sinθ, cosθ)^T, (-cosθ, sinθ)^T)

は直行行列である。
0104132人目の素数さん
垢版 |
2015/07/18(土) 23:00:26.43ID:SXTmQrjl
>>98

>>102-103
はどちらがいい解答ですかね?
0108132人目の素数さん
垢版 |
2015/07/18(土) 23:04:28.65ID:SXTmQrjl
>>101

((sinθ, cosθ)^T, (-cosθ, sinθ)^T)
=
((cos(π/2-θ), sin(π/2-θ))^T, (-sin(π/2-θ), cos(π/2-θ)

なので
>>98
の解答に含まれています。
0109132人目の素数さん
垢版 |
2015/07/19(日) 07:12:55.03ID:IF0gJDzj
>>98

実は>>98が斎藤正彦著『斎藤正彦 線型代数学』に載っている解答です。

「d = a ≠ 0 なら b = -c」
「d = -a ≠ 0 なら b = c」

ですよね。

d = a = 0 のときには b = -c なのか b = c なのか決定できませんよね。
0110132人目の素数さん
垢版 |
2015/07/19(日) 07:15:47.70ID:IF0gJDzj
2次、3次、4次の直行行列で、成分がどれも 0 でない有理数であるものを(ひとつ)さがせ。
0111132人目の素数さん
垢版 |
2015/07/19(日) 07:27:25.51ID:IF0gJDzj
3^2 + 4^2 = 5^2
(3/5)^2 + (4/5)^2 = 1
A = ((3/5, 4/5)^T, (-4/5, 3/5)^T)
は2次の直行行列。

3^2 + 4^2 = 5^2
5^2 + 12^2 = 13^2
したがって、
3^2 + 4^2 + 12^2 = 13^2
(3/13)^2 + (4/13)^2 + (12/13)^2 = 1
A = ((3/13, 4/13, 12/13)^T, (-4/13, 12/13, -3/13)^T, (12/13, 3/13, -4/13)^T)
は3次の直行行列。

13^2 + a^2 = b^2 となるような整数 a, b を見つける:
13^2 = b^2 - a^2 = (b - a)*(b + a) = 1 * 13^2
b - a = 1
b + a = 13^2 = 169

2*b = 170
b = 85
a = 84

13^2 + 84^2 = 85^2
3^2 + 4^2 + 12^2 = 13^2
3^2 + 4^2 + 12^2 + 84^2 = 85^2
(3/85)^2 + (4/85)^2 + (12/85)^2 + (84/85)^2 = 1

A = ((3/85, 4/85, 12/85, 84/85)^T, (-84/85, -12/85, -3/85, 4/85)^T,
(4/85, -3/85, -84/85, 12/85)^T, (-12/85, 84/85, -4/85, -3/85)^T))
は4次の直行行列。
0112132人目の素数さん
垢版 |
2015/07/19(日) 07:40:06.91ID:IF0gJDzj
(3/85)^2 + (4/85)^2 + (12/85)^2 + (84/85)^2 = 1
という関係式から

u1 = (3/85, 4/85, 12/85, 84/85)^T
という成分がすべて0でない有理数である、長さが 1 のベクトルを見つけました。

そして、 u1 の成分を並べ替えて、成分に適当にマイナスを掛けることによって、

||u_i|| = 1
(u_i, u_j) = 0 (i ≠ j)
となるような以下の 4 つのベクトルを見出しました。

u1 = (3/85, 4/85, 12/85, 84/85)^T
u2 = (-84/85, -12/85, -3/85, 4/85)^T
u3 = (4/85, -3/85, -84/85, 12/85)^T
u4 = (-12/85, 84/85, -4/85, -3/85)^T

質問なのですが、

u1 = (a, b, c, d, ...) (a^2 + b^2 + c^2 + d^2 + ... = 1、a, b, c, d, ... はゼロでない有理数)

というベクトル u1 の成分を並べ替えて、成分に適当にマイナスを掛けることによって、

||u_i|| = 1
(u_i, u_j) = 0 (i ≠ j)
となるようなベクトルを見つけることは常に可能なのでしょうか?

それとも、上のように u1 から u2, u3, u4 を見つけることができたのは偶然なのでしょうか?
0113132人目の素数さん
垢版 |
2015/07/19(日) 07:44:51.02ID:IF0gJDzj
ちなみに、斎藤正彦著『斎藤正彦 線型代数学』の解答は、以下です。
説明はなく答えだけ書いてあります。

A = ((4/5, 3/5)^T, (-3/5, 4/5)^T)
は2次の直行行列。

A = ((1/3, -2/3, -2/3)^T, (-2/3, 1/3, -2/3)^T, (-2/3, -2/3, 1/3)^T)
は3次の直行行列。

A = ((1/2, -1/2, -1/2, -1/2)^T, (-1/2, 1/2, -1/2, -1/2)^T,
(-1/2, -1/2, 1/2, -1/2)^T, (-1/2, -1/2, -1/2, 1/2)^T))
は4次の直行行列。
0114132人目の素数さん
垢版 |
2015/07/19(日) 13:27:00.04ID:IF0gJDzj
斎藤正彦著『斎藤正彦 線型代数学』を読んでいます。

行列式の定義に登場する S_n の元の性質や符号関数 sgn に関する性質を
詳しく書いていますね。

偶置換、奇置換が定義できることを証明するのに、差積などという不純なもの
を使用していないのがいいですね。
0115132人目の素数さん
垢版 |
2015/07/19(日) 13:37:53.45ID:IF0gJDzj
sgn の性質って単純な話なのに証明しようと思うと結構長くなるんですね。
0116132人目の素数さん
垢版 |
2015/07/19(日) 13:48:17.90ID:IF0gJDzj
斎藤正彦著『線型代数入門』と『斎藤正彦 線型代数学』。

『斎藤正彦 線型代数学』は確かに内容面で改良されているように思います。

『線型代数入門』:
ハードカバーであるのは良くない。
趣味の悪い緑色のカバーは良くない。

『斎藤正彦 線型代数学』:
ソフトカバーであるのは良い。
カバーに書かれている趣味の悪い宣伝文は良くない。
タイトルに著者の名前が含まれているのは良くない。
0117132人目の素数さん
垢版 |
2015/07/19(日) 13:54:34.72ID:cFX4KKVs
俺もソフトカバー派
0120132人目の素数さん
垢版 |
2015/07/19(日) 20:37:04.75ID:IF0gJDzj
A を (m, n) 型行列、 B を (n, m) 型行列とする。
E_m + A*B が正則なことと、 E_n + B*A が正則なこととは同値であることを示せ。

ごちゃごちゃ計算してたら解けました。

解答:
E_m + A*B が正則であると仮定する。
(E_m + A*B)*C = C*(E_m + A*B) = E_m となるような (m, m) 型行列 C が存在する。

C + A*B*C = (E_m + A*B)*C = C*(E_m + A*B) = C + C*A*B
より
A*B*C = C*A*B

(E_n + B*A)*(E_n - B*C*A) = E_n + B*A - B*C*A - B*(A*B*C)*A
= E_n + B*A - B*C*A - B*(C*A*B)*A
= E_n + B*A - B*(C*(E_m + A*B))*A
= E_n + B*A - B*E_m*A = E_n + B*A - B*A = E_n

したがって、
E_n + B*A は、正則である。

逆も同様にして示せる。
0121132人目の素数さん
垢版 |
2015/07/19(日) 20:48:10.61ID:IF0gJDzj
斎藤正彦さんの解答は以下になります。

>>120
の解答のほうが分かりやすいですし、具体的に逆行列が求まっているという点で優れていますね。

解答:
問題は m と n に関して対称だから、 E_m + A*B が正則なら E_n + B*A も
正則であることを示せばよい。かりに E_n + B*A が正則でないとすると、ゼロでない
n 項列ベクトル u で、 (E_n + B*A)*u = 0 なるものが存在する。
B*A*u = -u ≠ 0 だから A*u ≠ 0。
0 = A*(E_n + B*A)*u = (A + A*B*A)*u = (E_m + A*B)*(A*u) だから
E_m + A*B は正則でない。
0123132人目の素数さん
垢版 |
2015/07/20(月) 08:00:41.89ID:FlZLF8qU
斎藤正彦著『斎藤正彦 線型代数学』を読んでいます。

行列式の列に関する多重線型性の証明が誤っています。

斎藤正彦著『斎藤正彦 線型代数学』の行列式の定義ですと、
行列式の行に関する多重線型性を証明するのが自然です。

以下の画像で赤で囲った部分を見てください:
http://i.imgur.com/SpvI79b.jpg
http://i.imgur.com/hIwRc6Y.jpg

ちなみに、斎藤正彦著『線型代数入門』も『斎藤正彦 線型代数学』と
行列式の定義は同じですが、やはり行列式の列に関する多重線型性のほう
を定理として述べています。証明は明らかだとして省略されていますので
誤りとはいえませんが、不自然ですよね。出版から半世紀以上が経つベスト
セラーの本であるにもかかわらず、こんな基本的なところが直されていない
とは驚きです。
0124132人目の素数さん
垢版 |
2015/07/20(月) 09:14:27.15ID:FlZLF8qU
斎藤正彦著『斎藤正彦 線型代数学』を読んでいます。

行列式の列に関する交代性の証明で、不自然なところを見つけました。

σ と τ の順序が不自然です。
τσ の順に書くのが自然です。

http://i.imgur.com/KxGfDep.jpg
0125132人目の素数さん
垢版 |
2015/07/20(月) 11:49:18.00ID:JViJ3vhT
こんな瑣末なところをわざわざ画像うpして揚げ足取りとは驚きです。
0126132人目の素数さん
垢版 |
2015/07/20(月) 12:10:17.26ID:mBLJmW9G
馬鹿の読んだ数学書の古本は読めたもんじゃ無い
本の最初の方にだけやたら大量の赤線
しかもトンチンカンなどうでも良い場所に orz
0127132人目の素数さん
垢版 |
2015/07/20(月) 12:13:16.69ID:JViJ3vhT
>>124
全く自然だし、仮に不自然だったとしても正しい証明なら問題無い
つまりお主の指摘は二重に間違っている
0128132人目の素数さん
垢版 |
2015/07/20(月) 12:45:21.05ID:DZ2BNc+u
掛け算順序問題の弊害か
0129132人目の素数さん
垢版 |
2015/07/20(月) 13:55:44.76ID:dVvX8ZZq
b_j = a_τ(j) とおくと、b_σ(j) = a_τ(σ(j)) = a_{τσ(j)} だと思うんだけどなあ。
0130132人目の素数さん
垢版 |
2015/07/20(月) 14:14:24.43ID:JViJ3vhT
列の入れ替え→行列式の計算 の順なんだから、στ(j)だろ
行列式を計算する対象は、τで列を入れ替えた行列だぞ?
0132132人目の素数さん
垢版 |
2015/07/20(月) 14:54:10.11ID:YqISQTWc
今、雪江「代数学T」を読んでいます。置換の合成は「右からの作用」としたときには置換σ、τの積を
τ・σで定義した方が便利である、とあります。すばらしいですね。
0134132人目の素数さん
垢版 |
2015/07/20(月) 15:04:47.94ID:FlZLF8qU
>>129

そうですね。
斎藤正彦著『線型代数入門』ではちゃんとτσ の順になっています。
0136132人目の素数さん
垢版 |
2015/07/20(月) 15:19:46.02ID:FlZLF8qU
斎藤正彦先生の線形代数の本は読みやすいですけど、どうも窮屈な感じがしますね。

佐武一郎先生の線形代数の本は達人がさらっと書いた本という感じがしますね。
0137132人目の素数さん
垢版 |
2015/07/20(月) 15:25:01.97ID:FlZLF8qU
Sheldon Axlerの線形代数の本も読みやすいんですけど、どうも窮屈な感じがしますね。
小者臭がするというかなんというか。
0139132人目の素数さん
垢版 |
2015/07/20(月) 16:08:25.78ID:DZ2BNc+u
小物に小物と言われたくないだろう
0140132人目の素数さん
垢版 |
2015/07/20(月) 16:57:21.58ID:dVvX8ZZq
>>134

以下の二点を確認させてください。

[1]『斎藤正彦 線型代数学』では、
行列 A = [a_1, ... , a_n] と言ったら、A は a_j (1≦i≦n)
を列ベクトルとする行列ですね?
そうすると、A の (i, j) 成分は 縦ベクトル a_jの 第 i 成分
a(i, j)ですね。

[2] 行列式の定義は、
det [a_1, ... , a_n] = Σsgn(σ)a(1, σ(1))・...・a(n, σ(n))
(ただし、和の記号は {1, ..., n} の置換 σ の全体を動くものとする。)
ですね?
0142132人目の素数さん
垢版 |
2015/07/20(月) 17:19:16.97ID:0c98yVE7
あんぽんやなあ。
そんな本質的で無い細い異同で読めなくなるやつは、
難しい本は絶対読めない。
0143132人目の素数さん
垢版 |
2015/07/20(月) 17:28:26.15ID:JViJ3vhT
そもそもσがSnを動くとき、τσもστもSnを動くんだからどっちでもいいんだよ
鬼の首でも取ったかのように騒ぎ立てなさんな
0145132人目の素数さん
垢版 |
2015/07/20(月) 18:11:00.88ID:dVvX8ZZq
>>144

わかりました。忘れていたのですが、後ひとつ、確認事項があります。

{1, ... , n} の二つの置換 σ, τ と j∈{1, ... , n} に対し、
τσ(j) とは、j に σを作用させて、その後にτを作用させたもの
τ(σ(j)) のことですね?
0146132人目の素数さん
垢版 |
2015/07/20(月) 18:22:52.87ID:FlZLF8qU
斎藤正彦先生はなんか感覚が変わっていますよね。

↓これなんかちっとも難しくないのに、難しいと書いていますね。

http://i.imgur.com/aWOjN6t.jpg

抽象的な議論は得意そうですけど、行列式とか組合せ論とか苦手そうですよね。
極力、組合せ論的な議論を避けようとしていますよね。逃げているというか。
0147132人目の素数さん
垢版 |
2015/07/20(月) 18:25:32.54ID:dVvX8ZZq
>>145 で書いたとおりだとすると、
置換の順序は στではなくτσです。

b_k = a_τ(k) とおき、b_k の第 i 成分を b(i,k) とおくと、
b(i, k) = a(i, τ(k)) で、k = σ(j) として、
b(i, σ(j)) = a(i, τ(σ(j))) = a(i, τσ(j)) だから、

det [b_1, ... , b_n] = Σsgn(σ)b(1,σ(1))・...・b(n,σ(n))
= Σsgn(σ)a(1,τσ(1))・...・a(n,τσ(n))

となります。
0149132人目の素数さん
垢版 |
2015/07/20(月) 18:28:01.40ID:FlZLF8qU
>>147

そうですよね。
50年前の斎藤正彦先生は間違っていませんね。
0151132人目の素数さん
垢版 |
2015/07/20(月) 18:43:53.38ID:dVvX8ZZq
>>146

私の大学院時代の指導教授も言っていたのですが、
歳を取って、抽象的な一般論のほうへ傾く数学者って、結構いるそうです。

ただ、抽象的な一般論へ、と言っても、
定義に従って手を動かして計算、と言うものは
どこでも必要とされるはずですけどね。
0152132人目の素数さん
垢版 |
2015/07/20(月) 19:13:53.16ID:FlZLF8qU
>>151

そうなんですか。

ありがとうございました。
0153132人目の素数さん
垢版 |
2015/07/20(月) 19:49:11.24ID:JViJ3vhT
>>147
i はいいとして、k,j の定義すら無い説明はナンセンス
異論を封じ込めるためわざと暈したとしか思えん。
0155132人目の素数さん
垢版 |
2015/07/20(月) 19:52:40.87ID:Ies2kGcd
定義に戻って計算すればいいだけのことに、異論もクソもないだろ。
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況