X



トップページ数学
889コメント249KB

5次方程式の解を表現できる数体系 [転載禁止]©2ch.net

0871132人目の素数さん
垢版 |
2024/03/20(水) 09:02:08.91ID:1IUuzgqK
>>870
その計算法で2重根号が消えますか?
2重根号が避けられることはガロア理論から分かっている。
今、cos(P)のべき根表示が得られているとしよう。
(簡単のため 2π/11=Pとおいた。)
共役であるcos(2P),...,cos(5P)の表示は
簡単な係数変化で同時に得られる。
あくまでもこれらを利用して
sin(P)の値を表したいというのが動機。
且つ2重根号は避けたい。そのための工夫が>>867問2。
sin(P)/√11=c_1cos(P)+…+c_5cos(5P)
となる有理数c_1,...,c_5が得られればよい。
理屈としてはそういうこと。
0873132人目の素数さん
垢版 |
2024/03/20(水) 18:36:21.16ID:/GQJ8lRk
こんな感じで表されるってことか

exp(2π/5)=cos(2π/5)+i*sin(2π/5)
=1/4(-1+√(5))+i/2√(1/2(5+√(5)))
=1/4(-1+√(5))+5^(1/4)i/4(√(1-2i)+√(1+2i))
0874132人目の素数さん
垢版 |
2024/03/20(水) 20:01:42.70ID:1IUuzgqK
sin(P)/√11
=1/2^5(sin(3P)sin(5P)sin(7P)sin(9P))
=-2^5 sin(P)sin(2P)sin(4P)sin(6P)sin(8P)sin(10P)/11
=-2^7 sin^2(P)sin^2(2P)cos(2P)sin^2(8P)cos(8P)/11
=-2^7(1-cos^2(P))(1-cos^2(2P))(1-cos^2(8P))cos(2P)cos(8P)/11

これで一応問2は解けている。ここからさらに目的の「簡単な形」
にするのはソフトを使った。たちどころに次が分かった。
sin(P)/√11=(1-cos(P)+2cos(3P)-2cos(5P))/11.
0875132人目の素数さん
垢版 |
2024/03/20(水) 20:06:55.07ID:1IUuzgqK
このsin(2π/p)/√pの値を使う方法でうまくいくのは
p≡3 (mod 4)のときに限ることを注意しておこう。

>>67問1は確かに任意の奇素数pに対して成立するが
「おまけ」がp≡1 (mod 4) のときには成立せず
√p∈Q(cos(2π/p)) となる。一方で
Q(sin(2π/n))⊃Q(cos(2π/n)) は任意の3以上の
奇数nに対して成立するから、問2は
p≡1 (mod 4)のときは成立しない。かわりに√pよりも
「もっと難しい数」を使う必要があるということ。
0877132人目の素数さん
垢版 |
2024/03/23(土) 06:49:13.77ID:Vx2Za2W+
>>874の計算結果
P=2π/11とおいたとき
sin(P)/√11=(1-cos(P)+2cos(3P)-2cos(5P))/11
の両辺において、Pをa倍 (a=2,...,10)すると何が起きるか?
→ ±1倍の違いが生じる。
これは、ガロア群が√11にも作用するから。
そして、この値は実はルジャンドル記号(a/11)に等しい。
すなわち
sin(aP)/√11="(a/11)"(1-cos(aP)+2cos(3aP)-2cos(5aP))/11.
(ただの分数と区別するために" "で示した。)

ルジャンドル記号
https://ja.wikipedia.org/wiki/%E3%83%AB%E3%82%B8%E3%83%A3%E3%83%B3%E3%83%89%E3%83%AB%E8%A8%98%E5%8F%B7

このことからも分かるように、この計算の背後にあるのは
本質的には数論なのである。
0878132人目の素数さん
垢版 |
2024/03/23(土) 06:51:38.88ID:Vx2Za2W+
だからこそガウスは本質を突けたのだし、数論に対する理解
がなければ、ガウスの域には至らない。
0880132人目の素数さん
垢版 |
2024/03/23(土) 09:41:52.26ID:RgaxrBmC
i*sin(2π/11)=
i√(11/20
-1/20(-11/4(89+25√(5)+(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-1/80(-1+√(5)-i√(10+2√(5)))(-11/4(89-25√(5)+(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
-1/20(-11/4(89+25√(5)-(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-1/80(-1+√(5)+i√(10+2√(5)))(-11/4(89-25√(5)-(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
)

ルートの中の最初の項が11/20になる。11/20*2=11/10
0881132人目の素数さん
垢版 |
2024/03/31(日) 19:31:49.54ID:Kpwy9608
漏れら極悪非道のageブラザーズ!
今日もネタもないのにageてやるからな!
 ̄ ̄∨ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
  ∧_∧   ∧_∧    age
 (・∀・∩)(∩・∀・)    age
 (つ  丿 (   ⊂) age
  ( ヽノ   ヽ/  )   age
  し(_)   (_)J
タグ:
0882132人目の素数さん
垢版 |
2024/06/08(土) 21:21:32.17ID:EMPWFq/H
5次方程式の代数的解法について目途がついた。
ものすごくシンプルな方法で可能で、どうして不可能だと言われているのか不思議に思う。
とは言え計算量がえげつなくなりそうで、先へ進む気力が湧かない。
ゴールは既に見えていると思うのだけれども。
基本的な計算力の低さを実感して、我ながら残念だ。
0883132人目の素数さん
垢版 |
2024/06/08(土) 23:14:52.43ID:dUQY76ug
>>882
どこか勘違いしてるよ、確実に
0884釈迦如来
垢版 |
2024/06/09(日) 09:32:09.54ID:COvh5Wjo
>>883
代数的解法の意味を勝手に拡大している可能性あり
例えば、無限回の計算を認めるとか、根号以外の使用を認めるとか

なおガウスによる代数学の基本定理によって
解の存在も(解析的な)解法も分かっている
0885132人目の素数さん
垢版 |
2024/06/09(日) 09:59:39.14ID:/MzOSOZc
S_5は5次の巡回群をいくつか含んでるから
「5乗根の候補」になる数はラグランジュ分解式から
いくつも作れる。「それらを組み合わせれば解けそうな
気がするが、実は解けない」という、18〜19世紀に
繰り返されてきた誤りを繰り返してるだけだろう。
0887釈迦如来
垢版 |
2024/06/09(日) 12:42:26.06ID:COvh5Wjo
>>885
>S_5は5次の巡回群をいくつか含んでる
だから方程式の分解体はある中間体の巡回拡大
一方巡回拡大はどれも正規部分群ではない
>…から
>「5乗根の候補」になる数は
>ラグランジュ分解式からいくつも作れる。
もちろん作れる

>「それらを組み合わせれば解けそうな気がするが、実は解けない」
要するに正規部分群ではないので商群が存在しない
つまり上記の「ラグランジュ分解式から作られた数」を
基礎体に添加しても「ある中間体」が出来上がらない

>…という、18〜19世紀に繰り返されてきた誤りを繰り返してるだけだろう。
【教訓】ダメなものはダメ
0888釈迦如来
垢版 |
2024/06/09(日) 12:43:52.35ID:COvh5Wjo
>>887
誤 一方巡回拡大はどれも正規部分群ではない
正 一方巡回群はどれも正規部分群ではない
0889132人目の素数さん
垢版 |
2024/06/10(月) 01:24:09.32ID:wG0fPyTj
f(x)を一般5次方程式とする。
f(x)=0の5つの根には自然に対称群S_5の作用が考えられる。
根から加減乗除で作られる数でS_5の作用で不変な数は
対称式の基本定理から、f(x)の係数の有理式としてあらわされる。
C_5をS_5の部分群である5次巡回群の一つとする。
根へのC_5の作用からラグランジュ分解式αを作る。
a=α^5は確かにC_5で不変な数である。
このような操作の繰り返しでS_5で不変な数に到達する
ことと、f(x)のべき根解法は同値であることに注意しよう。
(証明は勿論必要)
まずC_5で不変な数が作れたのだから、一見状況は
進捗したように見える。そこで問題になるのは
a=α^5が係数体からどのように構成されるかということ。
aがみたす既約方程式をF(x)=0とおく。
直観的にはF(x)の分解体はf(x)の分解体よりも真に小さい
ように思えるかもしれないが、この直観は実は誤り。
それが、C_5がS_5の正規部分群でないことからの帰結。
つまりこの場合、5乗根の添加によって状況は進捗しない
ということ。
レスを投稿する


ニューススポーツなんでも実況