X



トップページ数学
881コメント245KB
5次方程式の解を表現できる数体系 [転載禁止]©2ch.net
0001132人目の素数さん
垢版 |
2015/04/24(金) 01:31:57.51ID:qXrTAdCX
5次方程式はご存知の通り解の公式がございませんね。

しかしそれは我々が知ってる実数の数体系(有理数と有理数の冪根の加減乗除で表される数)で表現できないというだけで、
実数の表現を拡張して、5次方程式の解の公式を一般化する為の実数の新しい表現を与えてやれば表現できるはず。


ガロワはなんでそんな事に気づかなかったんだ?
人類は二次方程式や3次方程式の解を一般化する為に平方根や冪根、複素数を産み出した。
5次方程式の解の公式がそれまでのやり方で得られないからとなぜ諦めるのか?新しい実数表現を作れば良いではないか。
0831132人目の素数さん
垢版 |
2024/02/26(月) 00:18:10.11ID:Q7Ulu20R
>>830
一時期
ここ5chみたいなSNSで「悪魔の証明」を連呼するニワカみたいなのをよく見かけたが
ネット認証もちゃんと数学的な証明を実用品として使ってる営みの一例なんだよなあ。
0832132人目の素数さん
垢版 |
2024/03/02(土) 12:42:32.48ID:jtQNyzNi
>>757
行列の計算というのは、「和で結ばれた異なる項に対して、それぞれ異なる符号を掛ける事」を許しているのが特徴だと思うんですよね。
理由は、例えば2*2行列の掛け算では、|A C|を|A + C|と見做すと、1列目は「1列目にAを、2列目にBを掛ける数」で、2列目は
                   |B D| |B D|
「1列目にCを、2列目にDを掛ける数」と考えられるので、後は普通の掛け算("α+β"×"γ+Δ")と同じと見做せます。ただし、
それぞれの項を掛け合わせる際は、左側が掛けられる対象で右側が掛ける倍数となり、例えばα×γなら「αの数値、αの列の位置、γの
数値、γの列の位置」と並べれば、真ん中の「αの列の位置、γの数値」で何倍するかが決まり、残りの情報と合わせて答えが出ます。
そして、A は +X +Yと分解できるので、結局「異なる項に異なる符号を掛ける演算」(+Y)が存在すると言えると思うんですよね。
    B   +X -Y                              -Y
例えば普通の計算上は”AーB=C”だとしても、この演算の下では、”AーB”と”C”は必ずしも同じとは言えないと思うんですよね。ですから
プラスとマイナスを足してから複素数平面にプロットすることは、ある意味で絶対値をとっている様なものだと思います。

ちなみに、+と+(2列目は+と-)をプラスの符号と考えて、その逆はマイナスとすると、行列を2乗した時に普通の掛け算と比べて
     + -     + +
マイナスが1回多く掛かる組み合わせを足し合わせると、行列式と等しくなります。行列式は絶対値の拡張だと思うので、正方行列で且つ
斜めの位置関係の要素を一纏まりの数と考えた方が自然だと見れば、そもそも普通の掛け算と行列の積をごっちゃに考えることが間違い
という可能性もあります。
0833132人目の素数さん
垢版 |
2024/03/03(日) 09:21:41.24ID:c+CtB3yx
すいません、表示がおかしくなっていました。

>>757
行列の計算というのは、「和で結ばれた異なる項に対して、それぞれ異なる符号を掛ける事」を許しているのが特徴だと
思うんですよね。
例えば2*2行列の掛け算では、|A C|を|A+C|と見做すと、1列目は「1列目にAを、2列目にBを掛ける数」で
               |B D| |B D|
2列目は「1列目にCを、2列目にDを掛ける数」と考えられますから、後は普通の掛け算”(α+β)×(γ+Δ)”と
同じ様に計算出来ます。(ただし、それぞれの項を掛け合わせる際は、左側が掛けられる対象で右側が掛ける倍数となり、
例えば上記の”α×Δ”なら「α、1列目、Δ、2列目」と情報を並べて真ん中の「1列目、Δ、」の部分で何倍するかが
決まり、残りの情報と合わせて答えが出ます。)それら各項は+Xと+Yに分解できるので、結局、「異なる項に異なる
                            +X −Y
符号を掛ける演算の存在」が言えると思うんですよね。そして、この演算の下では”A−Aの個数”を気にする必要があるので
一概にプラスとマイナスを足して一つにすることは出来ないと思うんですよね。

ちなみに+と+(2列目は+と−)がプラスの符号で、その反転はマイナスと考えて、2乗した時にマイナスが1回分余計に
    + −     + +
掛かる組み合わせのみを足し合わせると、行列式と等しくなります。行列式は絶対値の拡張だと思うので、正方行列で且つ
斜めの位置関係の要素を一纏まりの数と考えた方が自然だと見れば、そもそも普通の掛け算と行列の積をごっちゃに考える
事が間違いという可能性も有ります。
0834132人目の素数さん
垢版 |
2024/03/15(金) 20:59:16.79ID:CnsbPmQ5
1の原始11乗根の厳密解を求めてみたけど、反応がイマイチだった。
cos(2π/11)は参考サイトの1番目に具体的な式が提示されているけど、
sin(2π/11)はググってもどこにも無い感じなので頑張って計算してみたのだが...
というかカンニングして何とか求まったって幹事だが...
どのスレに書こうか迷ったけどとりあえずここに貼ってみる

exp(i*2π/11)=cos(2π/11)+i*sin(2π/11)=

-1/10
+1/40(-1+√(5)+i√(10+2√(5)))(-11/4(89+25√(5)+(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
+1/40(-1+√(5)+i√(10+2√(5)))(-11/4(89-25√(5)+(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
+1/40(-1+√(5)-i√(10+2√(5)))(-11/4(89+25√(5)-(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
+1/40(-1+√(5)-i√(10+2√(5)))(-11/4(89-25√(5)-(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)

+i/10√(55
-5(-11/4(89+25√(5)+(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-5/4(-1+√(5)-i√(10+2√(5)))(-11/4(89-25√(5)+(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
-5(-11/4(89+25√(5)-(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-5/4(-1+√(5)+i√(10+2√(5)))(-11/4(89-25√(5)-(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
)

=0.841253532831181168861811648919367717513292498420537898642650117...+0.540640817455597582107635954318691695431770607898113840035749889...i

cos(2π/11) を冪根で求めようとしたらとんでもないことになった(2/11,3/10追加) | てっぃちMarshの数学(Mathematics)教室
https://ameblo.jp/titchmarsh/entry-12570494916.html
Fermat's Last Theorem: Vandermonde: Eleventh Root of Unity expressed as radicals
http://fermatslasttheorem.blogspot.com/2008/01/vandermonde-eleventh-root-of-unity.html
math discoveries
https://mathandnumberystuff.tumblr.com/tagged/roots%20of%20unity
くろべえ: 1の累乗根(x^n-1=0 の解)の図
https://kurobe3463.blogspot.com/2007/05/figure-of-radical-root-of-1.html
0835132人目の素数さん
垢版 |
2024/03/16(土) 17:02:26.80ID:cDo/zWkL
>>834
5乗根を使っていますが、それは次の意味でいいですか?
「複素数zに対して、zの偏角の主値をArg(z)=θとするとき
z^{1/5}=|z|^{1/5}*exp(iθ/5) と定義する。」
偏角の主値
https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E6%95%B0%E3%81%AE%E5%81%8F%E8%A7%92

あと、虚部の最初の項
>+i/10√(55
が明らかにおかしい。これはi√11/10 であるはず。
0836132人目の素数さん
垢版 |
2024/03/16(土) 20:49:31.49ID:cDo/zWkL
>cos(2π/11) を冪根で求めようとしたらとんでもないことになった

はっきり言ってど素人の計算。
とんでもなくなるのは、根本的なことが分かってないから。
200年以上前のガウスの計算の方が遥かに遥かにレベルが高い。
ど素人と数学者の差は大きいということ。
0837132人目の素数さん
垢版 |
2024/03/16(土) 21:11:17.79ID:cDo/zWkL
ガウスD.A.執筆時ハタチ前後。どこに曖昧さが生じて
どこが曖昧さなく定まるのかということまで含めて
非常に注意深く書かれている。ところで、ガウスは
「べき根解法」とか「代数的解法」という言葉は使わない。
「混合方程式の純粋方程式への還元」という。
この言葉の遣い方も、よく考えられていると思う。
0838132人目の素数さん
垢版 |
2024/03/16(土) 21:23:51.73ID:cDo/zWkL
実は、cos(2π/11)のべき根表示が求められていれば
そこからsin(2π/11)の表示を得ることは
難しくはない。2次のガウス和及びヤコビ和という
ものが使われる。ただし、それはcos(2π/11)の
値が「きちんと、注意深く」求められていれば
という前提での話で、>>834のリンク先ではそれが
なされていないので、全く明解ではない。
ど素人の計算たる由縁。
0839132人目の素数さん
垢版 |
2024/03/16(土) 21:37:57.49ID:cDo/zWkL
>>834のリンク先の計算はゴミと考えてよい。
まず、cos(2π/11)のべき根表示を求めるのに
「短くなった」と言って、それでも十何ページも
かかっているのがおかしい。見通しが悪すぎる。
きちんと求まってもいない。単にべき根表示式と
数値計算が合うように腐心しているだけ。
きちんと求まっているとはどういうことか?
cos(2π/11)の表示が求まれば、そこから
sin(2π/11)の表示は難なく求まる。
また、exp(4πi/11),exp(6πi/11),...
の表示式も同時に明解に得られる。そういうこと。
0840132人目の素数さん
垢版 |
2024/03/16(土) 22:22:23.39ID:s6rwooOe
>>835
> あと、虚部の最初の項
> >+i/10√(55
> が明らかにおかしい。これはi√11/10 であるはず。

>>834で正しいよ
>>835=ど素人未満
0841132人目の素数さん
垢版 |
2024/03/16(土) 22:45:35.59ID:cDo/zWkL
>>840
虚部の最初の項は2次のガウス和であらわされることは理解してますか?
ψを2次指標とすると、ψ(-1)=-1,τ(ψ)=i√11 であり
τ(ψ)/10 となるはず。
ちなみに実部の最初の項は、1を自明指標として、τ(1)/10 =-1/10
で合っている。

exp(i*4π/11),exp(i*6π/11),...
はどうなるの? まったく示されていないよね。
べき根の意味も明示されていない。
>>835の意味でいいの?

そこまで考えられてないなら素人仕事と言われても
仕方ないね。
0842132人目の素数さん
垢版 |
2024/03/16(土) 22:48:44.87ID:cDo/zWkL
複素数のべき根は、一般に多価であり
偏角の主値などを使って、意味を決めておく必要がある
そのことにまったく注意を払わないのはど素人。
0843132人目の素数さん
垢版 |
2024/03/16(土) 23:13:08.55ID:cDo/zWkL
>どこに曖昧さが生じてどこが曖昧さなく定まるのかということ

本当はこういうことが数学的には大事なんだよ。
そのことにハタチそこらで自力で気づいていた
ガウスは天性の数学者であり
ともかく「公式のようなもの」さえ
得られればいいと思ってるのは、公式バカ。
それさえも>>834は間違ってるっぽいが
そうなったのも当然の帰結と言える。
0845132人目の素数さん
垢版 |
2024/03/17(日) 01:28:54.42ID:COjZ3RFF
>>844
「べき根表示式を元に数値計算した」なんて証拠はまったくない。
cos(2π/11),sin(2π/11)の函数値を書いただけなら
一致しているのは何ら不思議はない。

そんなロジックも分からないのは天才どころか「頭が弱い」。
0846132人目の素数さん
垢版 |
2024/03/17(日) 02:11:06.69ID:oDzkj8Vn
proc()begin
DIGITS:=10240;
a:=
-1/10
+1/40*(-1+sqrt(5)+I*sqrt(10+2*sqrt(5)))*(-11/4*(89+25*sqrt(5)+(45*sqrt(5-2*sqrt(5))-5*sqrt(5+2*sqrt(5)))*I))^(1/5)
+1/40*(-1+sqrt(5)+I*sqrt(10+2*sqrt(5)))*(-11/4*(89-25*sqrt(5)+(45*sqrt(5+2*sqrt(5))+5*sqrt(5-2*sqrt(5)))*I))^(1/5)
+1/40*(-1+sqrt(5)-I*sqrt(10+2*sqrt(5)))*(-11/4*(89+25*sqrt(5)-(45*sqrt(5-2*sqrt(5))-5*sqrt(5+2*sqrt(5)))*I))^(1/5)
+1/40*(-1+sqrt(5)-I*sqrt(10+2*sqrt(5)))*(-11/4*(89-25*sqrt(5)-(45*sqrt(5+2*sqrt(5))+5*sqrt(5-2*sqrt(5)))*I))^(1/5)

+I/10*sqrt(55
-5*(-11/4*(89+25*sqrt(5)+(45*sqrt(5-2*sqrt(5))-5*sqrt(5+2*sqrt(5)))*I))^(1/5)
-5/4*(-1+sqrt(5)-I*sqrt(10+2*sqrt(5)))*(-11/4*(89-25*sqrt(5)+(45*sqrt(5+2*sqrt(5))+5*sqrt(5-2*sqrt(5)))*I))^(1/5)
-5*(-11/4*(89+25*sqrt(5)-(45*sqrt(5-2*sqrt(5))-5*sqrt(5+2*sqrt(5)))*I))^(1/5)
-5/4*(-1+sqrt(5)+I*sqrt(10+2*sqrt(5)))*(-11/4*(89-25*sqrt(5)-(45*sqrt(5+2*sqrt(5))+5*sqrt(5-2*sqrt(5)))*I))^(1/5)
);
b:=float(a);
c:=abs(b^11-1)*10^10000;
print(float(floor(c*10^300)/10^300));
end_proc();

0.000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000044470036415117348991742799543132170618158629999\
260373
0847132人目の素数さん
垢版 |
2024/03/17(日) 02:43:37.74ID:COjZ3RFF
>>846
なるほどね。
>+I/10*sqrt(55
以下式が続いてたわけね。それなら合ってるのかもね。
根をべき根たちの線形結合の形であらわせば
平方根の項(ガロア群の作用で±1倍の違いが生じる)
として、i√11/10 が単独で必ず括り出されることは確かだけどね。
0848132人目の素数さん
垢版 |
2024/03/17(日) 03:12:53.95ID:COjZ3RFF
>根をべき根たちの線形結合の形であらわせば

なぜこの形にすることに意味があるかと言えば
ガロア群の作用による係数の変化が一目瞭然だから。
結果として、exp(2π/11)の一つのべき根表示式から
すべてのexp(2kπ/11),(k=2,3,...,10)のべき根表示
が同時に得られることになる。
つまり、一つの表示式は簡単な係数変化で、同時に
10個の根の表示を兼ねるわけ。2次方程式の解の
公式が2つの根を同時に示しているようにね。
0850132人目の素数さん
垢版 |
2024/03/17(日) 15:25:15.14ID:fZzXiqgZ
>>840
うむ。
結局、「sin(2π/11)」の冪根を求めるのか、「i*sin(2π/11)」の冪根を求めるのかって話だね。
結論から言うとどちらも可能だが、「i*sin(2π/11)」よりは「sin(2π/11)」で表した方が便利だよねって話。
0853132人目の素数さん
垢版 |
2024/03/17(日) 19:02:40.79ID:fZzXiqgZ
>>851
こうですね。

nが4以上のとき (0≦θ≦π/2)
√(1-cos(2π/n)^2)=sin(2π/n)
√(1-sin(2π/n)^2)=cos(2π/n)

√(cos(2π/n)^2-1)=sin(-2π/n)=i*sin(2π/n)
√(sin(2π/n)^2-1)=cos(-2π/n)=i*cos(2π/n)
√(cos(-2π/n)^2-1)=sin(-2π/n)
√(sin(-2π/n)^2-1)=cos(-2π/n)
0854132人目の素数さん
垢版 |
2024/03/17(日) 19:06:13.66ID:fZzXiqgZ
>>851 >>853
やってしまった

nが4以上のとき (-π/2≦θ≦π/2)

√(1-cos(2π/n)^2)=sin(2π/n)
√(1-sin(2π/n)^2)=cos(2π/n)

√(cos(2π/n)^2-1)=sin(-2π/n)=i*sin(2π/n)
√(sin(2π/n)^2-1)=cos(-2π/n)=i*cos(2π/n)

√(cos(-2π/n)^2-1)=sin(-2π/n)
√(sin(-2π/n)^2-1)=cos(-2π/n)

√(1-cos(-2π/n)^2)=sin(-2π/n)
√(1-sin(-2π/n)^2)=cos(-2π/n)
0855132人目の素数さん
垢版 |
2024/03/17(日) 20:58:51.49ID:COjZ3RFF
>>854
それらの公式だけからsinとcosの値の体論的な関係が
把握できると思ってるなら間違ってますよ。
たとえば nが4で割れない整数のとき、√(1-sin(2π/n)^2)の
√記号は見かけに過ぎない。すなわちこのとき、cos(2π/n)は
sin(2π/n)のQ係数有理式であらわされる。

証明できますか?
0856132人目の素数さん
垢版 |
2024/03/17(日) 21:44:12.89ID:COjZ3RFF
ガロア理論と複素解析くらいは理解していないと
現代的にスマートな記述はできないと思う。
ガウスは220年前に、これら無しで完全な記述を
行っているが、天才であり例外。
834のリンク先の著者がn=11のケースで既に
「とんでもないことになった」とバカなことを
言っているのは、正にこの理解が欠けているから。
複素解析は多少大げさだが、べき根の多価性を理解
していないのは致命的。主値などを使ってべき根の意味
を明示していないというのは分かってないということ。
ソフトの出力に任せて、自分では考えていないのだろう。
0857132人目の素数さん
垢版 |
2024/03/17(日) 21:52:08.15ID:COjZ3RFF
>n=11のケースで既に「とんでもないことになった」

このリンクは確か某コピペバカも引用して真に受け
「n=11くらいが既に計算の限界なんだ」と言っていたから
罪が重い。一体、何のつもりでゴミをネットに上げて
いるのだろう?
0858132人目の素数さん
垢版 |
2024/03/17(日) 22:56:48.09ID:fZzXiqgZ
Vandermondeの解法で、Δ1,Δ2,Δ3,Δ4が求められる。
V1=1/5(-1+Δ1+Δ2+Δ3+Δ4)のような式に代入するが、
そのままでは目的の値にならないので、
1の5乗根のω0(=1),ω1,ω2,ω3,ω4として、
それぞれのΔに適当なωを掛ける必要がある。
結果的に、(1の11乗根をz_0=1,z_1,z_2,z_3,...,z_8,z_9,z_10として)
V1=z_1+z_10=cos(2π/11)
V2=z_2+z_9=cos(4π/11)
V3=z_3+z_8=cos(6π/11)
V4=z_4+z_7=cos(8π/11)
V4=z_5+z_6=cos(10π/11)
が得られます。
上記の値は5次方程式の解です。、
しかしsin(2π/11)の値は10次方程式の解なので何らかの処理が必要です。
ここはまだ勉強が必要ですが、
(z_2+z_9)^2 = z_1-z_11-2 = -(z_1-z_11-2)+2になるようです。
なので、√(2-"V2")/2によりsin(2π/11)が求まるようです。
√(1-("V1"/2)^2)
でもsin(2π/11)が求まりますが、V2を使ったほうが、
2乗が消えるためスマートです。
0859132人目の素数さん
垢版 |
2024/03/17(日) 22:59:02.18ID:fZzXiqgZ
>>858
訂正


(z_2+z_9)^2 = z_1-z_11-2 = -(z_1-z_11-2)+2になるようです。


(z_2+z_9)^2 = z_1-z_11-2 = -(z_1-z_11)+2になるようです。
0860132人目の素数さん
垢版 |
2024/03/17(日) 23:45:36.58ID:fZzXiqgZ
>>858-859
(z_1+z_10)^2 - z_2+z_9=2
z_2+z_9 - (z_1+z_10)^2=-2
より
(z_2+z_9)^2 = z_1-z_11 -2 = 2- (z_1-z_11-2)

また三角関数にして計算すれば分かりやすい
0862132人目の素数さん
垢版 |
2024/03/18(月) 10:47:20.99ID:lGYbWgqf
>>858
>なので、√(2-"V2")/2によりsin(2π/11)が求まるようです。

半角の公式を使ってるわけね。確かにそれでも求まりますよ。
ただし、平方根の中にさらに5乗根を含むべき根表示式
が入る2重の形になりますが。しかし、ガロア理論が
分かっていれば、この2重の形も見かけに過ぎないこと
ことは明らか。なぜなら Q(sin(2π/11)/Qは巡回拡大
だから。実は、cos(2π/11)のべき根表示に用いたべき根たち
と√11の積、それらのQ(ζ_5)の数を係数とする一次結合
であらわされることが分かる。それが「正しい形」。
0863132人目の素数さん
垢版 |
2024/03/18(月) 11:20:38.97ID:lGYbWgqf
たとえば、sin(4π/11)はsin(2π/11)から有理的
にあらわされる。どうやって証明するか?
倍角の公式を使って
sin(4π/11)=2sin(2π/11)cos(2π/11)で
cos(2π/11)=√(1-sin(2π/11)^2) だから...
とやると「どうやってルートが外れるのか?」
と悩むことになる。nが奇数のときsin(nx)
はsin(x)の整数係数多項式であらわされる。
したがって、sin(18π/11)=-sin(4π/11)は
sin(2π/11)の整数係数多項式であらわされる...
と気づけば解決。
この場合、証明に4π/11という値の特殊性
を使っていることが分かる。

三角函数論→変数が任意の実数や複素数で成立する事柄

数論→個々の数の"個性"に強く依存して成立する事柄
0864132人目の素数さん
垢版 |
2024/03/18(月) 19:05:25.48ID:wVlCf4Wp
複素数から始めて、いわゆる四元数・八元数へと拡張していく規則を見つけたのだけれども、その次が一六元数どころか二五六元数に
なってしまった。 もしかしたら同じ性質のダブった元が存在して、それを除外すればもう少し減るかもしれないけれども、いづれに
せよ16よりはだいぶ多い。 この元同士の間には面白い性質が成り立つのだけれども、果たして自然が採用しているのは16か256
か、それとも両方ハズレだろうか。
0865132人目の素数さん
垢版 |
2024/03/19(火) 16:15:50.76ID:pX+joQf5
>>858
V5が抜けてた。あと求められる値は2cosね
V1=z_1+z_10=2cos(2π/11)
V2=z_2+z_9=2cos(4π/11)
V3=z_3+z_8=2cos(6π/11)
V4=z_4+z_7=2cos(8π/11)
V4=z_5+z_6=2cos(10π/11)
V5=z_5+z_6=2cos(12π/11)=-2cos(π/11)
0866132人目の素数さん
垢版 |
2024/03/19(火) 16:17:20.01ID:pX+joQf5
>>858 >>865
訂正
V1=z_1+z_10=2cos(2π/11)
V2=z_2+z_9=2cos(4π/11)
V3=z_3+z_8=2cos(6π/11)
V4=z_4+z_7=2cos(8π/11)
V5=z_5+z_6=2cos(12π/11)=-2cos(π/11)
0867132人目の素数さん
垢版 |
2024/03/19(火) 18:13:38.44ID:CJpJvQsa
大学数学が理解できなかったひとへの練習問題

Qは有理数体、Q(a)はQに数aを添加して得られる数体
をあらわすものとする。

問1
√11∈Q(sin(2π/11)) を示せ。

問2
sin(2π/11)/√11∈Q(cos(2π/11)) を示せ。

おまけ
√11∉Q(cos(2π/11)) を示せ。

注:問1,問2とも計算だけで示すことができるが
大学数学はどう計算すればいいかの「見通し」を与える。
おまけは参考まで。問2の面白さが際立つと思う。
0868132人目の素数さん
垢版 |
2024/03/19(火) 21:58:00.24ID:pX+joQf5
2sin(π/3)=√3
2sin(π/5)*2sin(2π/5)=√5
2sin(π/7)*2sin(2π/7)*2sin(3π/7)=√7
2sin(π/9)*2sin(2π/9)*2sin(3π/9)*2sin(4π/9)=√9=3
2sin(π/11)*2sin(2π/11)*2sin(3π/11)*2sin(4π/11)*2sin(5π/11)=√11
2sin(π/13)*2sin(2π/13)*2sin(3π/13)*2sin(4π/13)*2sin(5π/13)*2sin(6π/13)=√13
0869132人目の素数さん
垢版 |
2024/03/19(火) 22:07:14.37ID:pX+joQf5
2cos(π/3)=1
2cos(π/5)*2cos(2π/5)=1
2cos(π/7)*2cos(2π/7)*2cos(3π/7)=1
2cos(π/9)*2cos(2π/9)*2cos(3π/9)*2cos(4π/9)=1
2cos(π/11)*2cos(2π/11)*2cos(3π/11)*2cos(4π/11)*2cos(5π/11)=1
2cos(π/13)*2cos(2π/13)*2cos(3π/13)*2cos(4π/13)*2cos(5π/13)*2cos(6π/13)=1
0871132人目の素数さん
垢版 |
2024/03/20(水) 09:02:08.91ID:1IUuzgqK
>>870
その計算法で2重根号が消えますか?
2重根号が避けられることはガロア理論から分かっている。
今、cos(P)のべき根表示が得られているとしよう。
(簡単のため 2π/11=Pとおいた。)
共役であるcos(2P),...,cos(5P)の表示は
簡単な係数変化で同時に得られる。
あくまでもこれらを利用して
sin(P)の値を表したいというのが動機。
且つ2重根号は避けたい。そのための工夫が>>867問2。
sin(P)/√11=c_1cos(P)+…+c_5cos(5P)
となる有理数c_1,...,c_5が得られればよい。
理屈としてはそういうこと。
0873132人目の素数さん
垢版 |
2024/03/20(水) 18:36:21.16ID:/GQJ8lRk
こんな感じで表されるってことか

exp(2π/5)=cos(2π/5)+i*sin(2π/5)
=1/4(-1+√(5))+i/2√(1/2(5+√(5)))
=1/4(-1+√(5))+5^(1/4)i/4(√(1-2i)+√(1+2i))
0874132人目の素数さん
垢版 |
2024/03/20(水) 20:01:42.70ID:1IUuzgqK
sin(P)/√11
=1/2^5(sin(3P)sin(5P)sin(7P)sin(9P))
=-2^5 sin(P)sin(2P)sin(4P)sin(6P)sin(8P)sin(10P)/11
=-2^7 sin^2(P)sin^2(2P)cos(2P)sin^2(8P)cos(8P)/11
=-2^7(1-cos^2(P))(1-cos^2(2P))(1-cos^2(8P))cos(2P)cos(8P)/11

これで一応問2は解けている。ここからさらに目的の「簡単な形」
にするのはソフトを使った。たちどころに次が分かった。
sin(P)/√11=(1-cos(P)+2cos(3P)-2cos(5P))/11.
0875132人目の素数さん
垢版 |
2024/03/20(水) 20:06:55.07ID:1IUuzgqK
このsin(2π/p)/√pの値を使う方法でうまくいくのは
p≡3 (mod 4)のときに限ることを注意しておこう。

>>67問1は確かに任意の奇素数pに対して成立するが
「おまけ」がp≡1 (mod 4) のときには成立せず
√p∈Q(cos(2π/p)) となる。一方で
Q(sin(2π/n))⊃Q(cos(2π/n)) は任意の3以上の
奇数nに対して成立するから、問2は
p≡1 (mod 4)のときは成立しない。かわりに√pよりも
「もっと難しい数」を使う必要があるということ。
0877132人目の素数さん
垢版 |
2024/03/23(土) 06:49:13.77ID:Vx2Za2W+
>>874の計算結果
P=2π/11とおいたとき
sin(P)/√11=(1-cos(P)+2cos(3P)-2cos(5P))/11
の両辺において、Pをa倍 (a=2,...,10)すると何が起きるか?
→ ±1倍の違いが生じる。
これは、ガロア群が√11にも作用するから。
そして、この値は実はルジャンドル記号(a/11)に等しい。
すなわち
sin(aP)/√11="(a/11)"(1-cos(aP)+2cos(3aP)-2cos(5aP))/11.
(ただの分数と区別するために" "で示した。)

ルジャンドル記号
https://ja.wikipedia.org/wiki/%E3%83%AB%E3%82%B8%E3%83%A3%E3%83%B3%E3%83%89%E3%83%AB%E8%A8%98%E5%8F%B7

このことからも分かるように、この計算の背後にあるのは
本質的には数論なのである。
0878132人目の素数さん
垢版 |
2024/03/23(土) 06:51:38.88ID:Vx2Za2W+
だからこそガウスは本質を突けたのだし、数論に対する理解
がなければ、ガウスの域には至らない。
0880132人目の素数さん
垢版 |
2024/03/23(土) 09:41:52.26ID:RgaxrBmC
i*sin(2π/11)=
i√(11/20
-1/20(-11/4(89+25√(5)+(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-1/80(-1+√(5)-i√(10+2√(5)))(-11/4(89-25√(5)+(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
-1/20(-11/4(89+25√(5)-(45√(5-2√(5))-5√(5+2√(5)))i))^(1/5)
-1/80(-1+√(5)+i√(10+2√(5)))(-11/4(89-25√(5)-(45√(5+2√(5))+5√(5-2√(5)))i))^(1/5)
)

ルートの中の最初の項が11/20になる。11/20*2=11/10
0881132人目の素数さん
垢版 |
2024/03/31(日) 19:31:49.54ID:Kpwy9608
漏れら極悪非道のageブラザーズ!
今日もネタもないのにageてやるからな!
 ̄ ̄∨ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
  ∧_∧   ∧_∧    age
 (・∀・∩)(∩・∀・)    age
 (つ  丿 (   ⊂) age
  ( ヽノ   ヽ/  )   age
  し(_)   (_)J
タグ:
レスを投稿する


ニューススポーツなんでも実況