>>763
R環上の平坦加群の直和因子が全て平坦であることを証明します。

まず、R加群 M, N がそれぞれ平坦であるとは、任意の R-加群準同型 f: P → M に対し、ある R-加群準同型 g: M → P で fg = id_P となるようなものが存在することを意味します。

ここで、M, N が R環上の平坦加群であり、それらの直和 M ⊕ N を考えます。このとき、任意の R-加群準同型 h: P → M ⊕ N に対して、h を M への射影と N への射影に分解できます。

さらに、M, N が平坦であることから、それぞれに対して M への射影と N への射影を fg = id_P となるような R-加群準同型 f, g に分解できます。

これらの分解を用いることで、h = (f, g) となるような R-加群準同型 f, g が存在することを示すことができます。

よって、M ⊕ N も R環上の平坦加群であることが証明できます。