ある数(a_o)のp乗から0以外の数(y)を引きます。
その結果に −a_o を掛ける一方で、yとpで割ります。
そして、その結果をa_oに加えます。つまり、次式の演算を行います。
    {a_o^(p)−y}×(−a_o)/(yp)+a_o

この結果(a_1)をa_oの代わりに用いてこの演算を再び行います。
そして、a_1,a_2,a_3,…と繰り返すと、
やがてyのp乗根(正又は負の実根)の極めて精密な近似値となります。
ただし指数(p)が奇数のときは、a_oの正負をyの正負と一致させ、
かつ絶対値が次式の範囲内に存在する必要があります。(偶数のときにはもっと広くとり得る。正負は不問)
    0<|a_o|<[p]√{|y|×(p+1)}  ([p]√kは、kのp乗根)

長くなりましたので、次のレスで収束速度と精度について補足します。
長文失礼しました。