>>456
さて、求める確率は
p = P(∃i C[i]=C[i+1]) なのだが、
手始めに i をどこか1か所に固定してしまって、
P(C[1]=C[2]) のようなものを考えた場合、これは簡単に求まる。
C[1] が1から13までの数字のいずれかである場合、C[2] は、残り53通りの可能性のうち、3通りで C[1] と等しくなるので、
P(C[1]=C[2]) = (52/54) * (3/53) = 26/477
この条件は、すべての 1≦i≦53 において同様なので、
P(C[i]=C[i+1]) = (52/54) * (3/53) = 26/477
1≦i≦53のいずれかのiで、C[i]=C[i+1]となる確率を求めたいので、これらの和を取ると…
Σ[1≦i≦53] P(C[i]=C[i+1]) = 53 * (52/54) * (3/53) = 26/9 となり、1より大きくなる
この和が1を超えてしまうのは、異なる i1 と i2 で P(C[i1]=C[i1+1]) と P(C[i2]=C[i2+1]) の両方に
「C[i1]=C[i1+1] かつ C[i2]=C[i2+1]」の場合を含んでしまっているからであって、そのような重複したケースの確率を差し引く必要がある。
Σ[1≦i1≦53] P(C[i1]=C[i1+1]) - Σ[1≦i1<i2≦53] P(C[i1]=C[i1+1] かつ C[i2]=C[i2+1])
このようにすると、さらに「C[i1]=C[i1+1] かつ C[i2]=C[i2+1] かつ C[i3]=C[i3+1]」の場合を過剰に差し引いてしまうので、これらは加算する必要がある。
これらを繰り返すと、結局確率 p は、

p = P(1≦∃i≦53 C[i]=C[i+1]) = Σ[m=1..53] (-1)^(m-1) * Σ[1≦i_1<..<i_m≦53] P(∧[k=1..m] C[i_k]=C[i_k+1])

のような式で求めることができる。