>>185の答え:7つ。

f(xy+1) = f(x+y) + f(x)f(y) …[0]

x=y=1 とすれば f(1)=0.
x=y=0 とすれば f(0)=0,-1.
f(0)=0 の場合、[0]において y=0 とすれば f(x)=0 が導けるので、以降 f(0)=-1 と仮定する。
y=-1 とすると、 f(-x+1) = f(x-1) + f(x)f(-1). …[1]
この x を 2-x に置き換えれば
f(x-1) = f(1-x) + f(2-x)f(-1).
足しあわせて
f(-1)(f(x)+f(2-x))=0.

(i) f(-1)≠0 の時
f(x)+f(2-x)=0. (特に、f(2)=1.)
これと [1] より f(x+1) + f(-1)f(x) + f(x-1) = 0.
これは三項間漸化式であり、f(0)=-1, f(1)=0 は決定されているので、関数fはf(-1)=:aの値で全て決まる。漸化式より、 f(-2) = 1 - a^2,
f(-3) = a^3 - 2a.
[0] で x=2, y=-2 とすれば、 f(-3) = -1 + f(-2) となるので、
a^3 + a^2 - 2a = 0.
a≠0 より、 a=1,-2.
これに対応するfはそれぞれ
f(x)=(xmod3)-1, (ただしxmod3はxを3で割った余り。以降同様)
f(x)=x-1
となるが、このどちらも[0]を満たす。

(ii)f(-1)=0 の時
[1]よりfは偶関数となるので、
f(m)= f(2m-3) - f(m-2)f(2) ([0]において x=m-2, y=2)
= f(-2m+3) - f(m-2)f(2)
= f(m-3) + f(m-1)f(2) - f(m-2)f(2). (x=m-1, y=-2)
これは四項間漸化式であり、 f(-1)=f(1)=0, f(0)=-1 は全て決定されているので、関数fはf(2)=:bの値で全て決まる。
漸化式よりf(3) = b^2 - 1,
f(4) = b^3 - b^2 - b,
f(5) = b^4 - 2b^3 - b^2 + 2b.
また、[0]でx=y=2を代入すると f(5)=f(4)+b^2 となるから、bについて解くと b=3,1,0,-1 となる。これに対応するfはそれぞれ
f(x)=x^2-1,
f(x)=-cos(πx/2),
f(x)=(x^2 mod3)-1,
f(x)=(xmod2)-1
となり、このいずれも[0]を満たす。

以上より、求めるfの個数は7つである。