>>139
どうも。スレ主です。

Q
>結論だけは、不同意
とはいえません
あなたは無限列の場合、決定番号の次の箱があることに同意した
つまり、代表元の情報から予測できる箱があることに同意したわけです
違いますか?
Y or N

A
残念ながら、不同意Nです。
補足
1.有限の列で、箱に入れる数をP進数にしたときは、可能です。
2.例えば、箱が3つで、2進数を入れるとする
  場合の数は、>>64の通り計算可です。
  場合の数は、全体で2^3=8通り。
  決定番号が2以下になる場合の数、2^2=4通り。
  決定番号が3になる場合の数、2^3−2^2=4通り。
3.ですので、決定番号が2以下になると仮定して、3番目の箱を開けて、2番目の箱を当てる確率は1/2となる。
  これは理論通りの1/2と一致します。(>>56 Sergiu Hart氏のPDF で P2の最後のRemarkの内容とも一致)
4.さて、一般の場合にも、>>64にならって、p進数で列が有限長Lならば
  決定番号がk(1〜(L-1))になる場合の数は、p^(L-1)です。全体はp^Lです。
  (なお、決定番号がk(L)になる場合の数は、p^(L)−p^(L-1) =(p-1)(p^(L-1))です)
5.上記3項と同様に、決定番号が(L-1)以下になると仮定して、L番目の箱を開けて、(L-1)番目の箱を当てる確率はp^(L-1)/p^L=1/pとなる。
  (>>56 Sergiu Hart氏のPDF で P2の最後のRemarkの内容と一致)
6.ここで、L→∞を考えることができる ∵>>135の通り”決定番号の集合をKとして、集合Kの濃度は可算無限”だから
  この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる (参考 https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論の零集合 (null set ) ご参照 )>>80
7.なお、p→∞(任意の実数の場合を含む)を考えることもできる。有限列無限列とも。この場合は、各箱の数を的中できる確率は0となる。

以上