>>657
つづき

(参考)
https://ja.wikipedia.org/wiki/%E5%85%A8%E9%A0%86%E5%BA%8F
全順序
全順序(ぜんじゅんじょ、英: total order)とは、集合での二項関係で、推移律、反対称律かつ完全律の全てを満たすもののことである。
即ち、集合 X が関係 ≦ による全順序をもつとは、X の任意の元 a, b, c に対して、次の3条件を満たすことである:

反対称律:a ≦ b かつ b ≦ a ならば a = b
推移律:a ≦ b かつ b ≦ c ならば a ≦ c
完全律(比較可能):a ≦ b または b ≦ a の何れかが必ず成り立つ


・集合 X に対して、Xから全順序集合への単射写像 f が存在するとき、x1 < x2 ⇔ f(x1) < f(x2) で X での順序を定めると、X は全順序集合になる。
・実数全体の成す集合 R は通常の大小関係 ("<" あるいは ">") によって全順序付けられる。従ってその部分集合としての、自然数全体の成す集合 N, 整数全体の成す集合 Z, 有理数全体の成す集合 Q なども全順序集合になる。これらは何れも、ある性質に関して最小の全順序集合として(同型を除いて)唯一の例を与えることが示せる(ここで、全順序集合 A がある性質に関して「最小」とは、同じ性質を持つ任意の B に対して A に順序同型な B の部分集合が存在することをいう)。
・N は上界を持たない最小の全順序集合である。
・Z は上界も下界も持たない最小の全順序集合である。
・Q は R の中で稠密となる最小の全順序集合である。ここでいう稠密性は a < b なる任意の実数 a, b に対し、a < q < b となる有理数 q が必ず存在することを言う。
・R は順序位相(後述)に関して連結となる最小の非有界全順序集合である。

関連する概念

全順序の同義語としても用いられる鎖(さ、英: chain)は、また適当な半順序集合の全順序部分集合に対しても用いられる。後者の意味での鎖はツォルンの補題で極めて重要な役割を果たす。
(引用終り)
以上