>>257
g(t) = Σ[k=-∞,∞] e^(-πi(k+t)) x^(2^|k+t|)
と置くときgは周期1の関数で
g(t) = Σ[n=-∞,∞] a_n e^(2πint)
とフーリエ展開できる

係数は
a_n = ∫[0,1]Σ[k=-∞,∞] e^(-πi(k+t)) x^(2^|k+t|) e^(-2πint) dt
= ∫[-∞,∞] x^(2^|t|) e^(-πi(2n+1)t) dt
= ∫[1,∞] x^u u^(-πi(2n+1)/log2) du/(u log2) + complex conj.
= Γ(-πi(2n+1)/log2,-log x) (-log x)^(πi/log2) / log2 + complex conj.

ガンマ関数は虚軸方向に関して指数で急減少するので、g(0)の主要項はn=0で
a_0→2|Γ(-πi/log2)/log2| cos(πlog(-log x)/log2 + θ)
= 0.00274922168 * cos(πlog(-log x)/log2 + θ) as x→1-0

したがって振動する