>>524
レーヴェンハイム-スコーレムが分かってないじゃんw

https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86
レーヴェンハイム-スコーレムの定理(英: Lowenheim-Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。

例と帰結
自然数を N、実数を R とする。この定理によれば、(N, +, ×, 0, 1) の理論(真の一階算術の理論)には非可算なモデルがあり、(R, +, ×, 0, 1) の理論(実閉体の理論)には可算なモデルがある。もちろん同型の違いを除いて、(N, +, ×, 0, 1) と (R, +, ×, 0, 1) を特徴付ける公理化が存在する。レーヴェンハイム-スコーレムの定理は、それらの公理化が一階ではあり得ないことを示している。例えば、線型順序の完備性は実数が完備な順序体であることを特徴付けるのに使われるが、その線型順序の完備性は一階の性質ではない。

https://fujicategory.hatenadiary.org/entry/20110721/1311211333
数学基礎論の勉強ノート
fujicategory
2011-07-21
レーヴェンハイム・スコーレムの定理!!
公理系Tが無限モデルを持てば、可算モデルも不可算モデルも持ちますよ!それどころかどんな大きな濃度のモデルも持ちますよ!っていう定理です。ちょっとテンションが上がってきますねー(∩´∀`)∩

まずは定理の引用から。(新井敏康「数学基礎論」より)

定理5.1.7(上方(Upward)Lowenheim-Skolem 定理)
1.言語Lでの公理系Tがどんなにも大きい有限モデルをもてば あるいは無限モデルをもてば
  (つまり∀ n ∃ M [M |= T\& card (|M|) >= n ] ,
  どんな無限基数κ>=card(L)についても
  TのモデルNで濃度κのものが存在する.