>>860
つづき

参考4)
https://en.wikipedia.org/wiki/(%CE%B5,_%CE%B4)-def∈ition_of_limit
(ε, δ)-def∈ition of limit
Cont∈uity
A function f is said to be cont∈uous at c if it is both def∈ed at c and its value at c equals the limit of f as x approaches c:
 lim _{x → c}f(x)=f(c)
The (ε ,δ ) def∈ition for a cont∈uous function can be obta∈ed from the def∈ition of a limit by replac∈g
0<|x-c|<δ with |x-c|<δ to ensure that f is def∈ed at c and equals the limit.

参考5)
https://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%97%E3%82%B7%E3%83%AD%E3%83%B3-%E3%83%87%E3%83%AB%E3%82%BF%E8%AB%96%E6%B3%95
ε-δ 論法
関数値の収束
ε は無限小とは異なり有限の値であるが、好きなだけ小さく選んでよいという条件が極限の概念を捉えることを可能にしているのである。
ここで何故、小さい数ばかり考えているのかと言えば、今のように ε2 < ε1 という大小関係を満たす 2 つの 正の数があったときに、 ε2 に対して δ2 を選んでおけば
0<|x-a|<δ2→ |f(x)-b| < ε2 < ε1
より、δ2 は ε1 に対する δ としても使えるからである。
小さい ε で δ を与えられるなら、それより大きい ε に対しても δ を与えられる。
逆に 小さい ε で δ が存在しない場合、任意の ε に対して、適当な δ が存在するという条件を満たさないため、
他の ε に対してどうであろうと、極限の存在を示すことはできない。

関数の連続性
実関数 f: R → R が
lim _{x → a}f(x)=f(a)
を満たすとき、 f(x) は x = a において連続であるという。
この極限の式は ε-δ 論法を用いて関数値の極限として定義される。
開区間 I = (p,q) 上の任意の点 a ∈ I において f(x) が連続であるとき f(x) は I 上で連続であるという。 これを ε-δ 論法で書くと
∀ε >0, ∀a∈ I, ∃δ >0 s.t. ∀x∈ I [|x-a|<δ → |f(x)-f(a)|<ε ]
となる。

つづく