>>859
つづき

位相空間
点列の収束の概念は、一般の位相空間においても収束先の近傍系をもちいて定式化される。しかし、一般的な位相空間の位相構造は、どんな点列が収束しているかという条件によって特徴付けできるとは限らない。そこで、ネットやフィルターといった、点列を拡張した構成とその収束の概念が必要になる。任意の位相空間 X に対し、X 上で収束している(収束先の情報も込めた)フィルターの全体 CN(X) や、あるいは収束しているフィルターの全体 CF(X) を考えると、これらからは X の位相が復元できる。

圏論
詳細は「極限 (圏論)」を参照

参考2)
https://ja.wikipedia.org/wiki/%E8%B6%85%E6%BA%96%E8%A7%A3%E6%9E%90
超準解析
1973年、直観主義者アレン・ハイティングは超準解析を「重要な数学的研究の標準モデル」だと賞賛した。[9]


参考3)
https://mathtra∈.jp/cont∈ue
高校数学の美しい物語
関数の連続性と一様連続性 最終更新:2019/06/05
lim x→a f(x)=f(a)
が成立するとき,関数 f(x) が x=a で連続という。
また,定義域(考えている区間内)の任意の点 a で関数 f が連続のとき,f を連続関数と呼ぶ。
関数の連続性のイメージ
いきなり厳密な定義を書くとひるんでしますので,まずはイメージから。
関数が連続であるとは,直感的には「関数がつながっている,ちぎれていない」という意味です。
連続と一様連続の厳密な定義
連続関数の厳密な定義は冒頭の定義を ε-δ を使って書けばよいだけです。(ε-δ を用いた極限の定義ははさみうちの原理の証明を参照してください。)
連続性の定義:
考えている区間内の任意の実数 a と,任意の正の実数 ε に対して,ある δ が存在して「|x-a|<δ なら |f(x)-f(a)|<ε」が成立する。

つづく