メモ
https://ja.wikipedia.org/wiki/%E6%A5%95%E5%86%86%E6%9B%B2%E7%B7%9A
楕円曲線

複素数体上の楕円曲線
楕円曲線の複素射影平面(英語版)の中のトーラスの埋め込みとしての定式化は、ヴァイエルシュトラスの楕円関数の不思議な性質から自然に導かれる。
複素数上に、どの楕円曲線も九個の変曲点を持っている。これらの点のうちの二つを通るどの直線も、三つ目の変曲点を通る。九つの点と12の直線はこのようにしてヘッセ配置(英語版)を成す。

代数体上の楕円曲線
有理数体 Q 上、あるいは一般に代数体 K 上定義された曲線 E/K についても接線と割線の方法 (the tangent and secant method) による加法は、E にも適用できる。群構造を定義したときにも述べたように、明示公式から、2つの K-有理点 P, Q の和は、P と Q を結ぶ直線は K 上に係数を持つゆえ、再び K 上に座標を持つ。
このようにして、E の K-有理点全体のなす集合は E の複素数点(K が実代数体の場合は実数点)全体のなす群の部分群を成す。この意味において、楕円曲線はアーベル群、すなわち P + Q = Q + P となっている。

高さ
代数体 K 上の楕円曲線上の点に対し、高さが定まる。

絶対的高さ (absolute height)

対数的高さ (logarithmic height)

標準的高さ (Canonical height) もしくは ネロン・テイトの高さ(英: Neron?Tate height

つづく