>258
>>2.あと、例えば、ある1点x0で不連続な関数があって、不連続なx0の近傍での連続を考える場合に、不連続な部分を含める意味もまた、無いのです
>T1空間なら成り立つはずです
>ε-δ論法の対象が距離空間なりハウスドルフ性を持っているから成り立つだけで
>いじわるな位相だと不連続な点を分離できないことがある

仰る通り。T1空間、ハウスドルフは下記ね。なお、下記”いくつかの分離公理の図示”は見ておくのが良いと思う
(図を使わない ブルバキ流には反するがね(なお、私は図を使ってイメージを作る方が絶対良いと思うよ))

ところで、ε-δ論法が普通活躍する 一変数実関数を考えると、
ハウスドルフ性は満たされているので、y=f(x)で y側に開集合が取れれば(それをOyとして)、
即 逆像f^-1(Oy) もまた 開集合になるのです

さて、y=sin(x) の実関数を考えると、明らかに |y|<=1であって
連続性を論じるのに、ε=2とか取っても、なんだかな〜です。間違いではないが
ε=2とかすると、開集合の逆像対応も見にくくなるのです
だから、間違いではないが、教育的ではないと思います

(参考)
https://ja.wikipedia.org/wiki/T1%E7%A9%BA%E9%96%93
T1空間

数学の位相空間論周辺分野における T1-空間(T1-くうかん、英: T1 space)は、相異なる二点を選べば必ず、その各々の点がもう一方の点を含まない開近傍を持つ位相空間を言う。同じことが位相的に識別可能な二点についてのみ成り立つ場合は R0-空間と言う。条件 T1 および R0 は分離公理の例である。

T1-空間は別名、迫接空間[訳語疑問点](accessible space; 到達可能空間)あるいはフレシェ空間ともいい、R0-は別名、対称空間とも呼ばれる。[* 1]

注釈
1^ 「フレシェ空間」という語は函数解析学で全く別の意味でよく用いられ、列型空間の一種であるフレシェ・ウリゾーン空間のことを単にフレシェ空間と呼ぶこともあるので、T1 と呼ぶ方が紛れがない。
同様に、「対称空間」の語もリーマン対称空間などを含む別な意味で使われるほうが一般に知られているので、避けたほうが無難である。

つづく