>>177 補足
(引用開始)
まず ε によって, 値域における像 f(x)
の "近さの基準" が設定されます. ここに包まれないものは「近くないと見なすぞ」というわけです. この近さの基準をふまえて
x の "近さの基準" δ を設ければ, それは
ε によって大きくも小さくもなるだろうけれど, 少なくとも像の "近く"
δ 近傍の像は総て f(x)
の "近く" に写っていると判ります. このように解き明かしていくと, いよいよ当初の疑問であった
連続性はなぜ逆像によって定義されるのか
に手が掛かります.
(引用終り)

”連続性はなぜ逆像によって定義されるのか”?
さらに補足すれば
<簡単に一変数実関数で考えると>
1.”連続”は、値域 像 f(x) つまり Y側の事情で決まっています
2.下記の「跳躍不連続性」の例で考えれば
3.「Y側で、開集合の部分を探す。その逆像が、X側で開集合になっていることを確認する」
 それが、ごく自然な連続であることの確認手順であり、また、連続の定義になる!

 そう理解するのが、分り易いと思います!!(^^

(参考)
https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E
不連続性の分類
(抜粋)
例 2: 跳躍不連続性
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Discontinuity_jump.eps.png/220px-Discontinuity_jump.eps.png
点 x0 = 1 は跳躍不連続点である。
(引用終り)
以上