メモ
https://www.saiensu.co.jp/search/?isbn=4910054690972&;y=2017
サイエンス社
数理科学 2017年9月号 No.651
数論と解析学
《女王》と関数が織りなす世界
ゼータ関数・L関数と解析学 鈴木正俊

これの詳しい話が下記です
http://www.math.titech.ac.jp/~msuzuki/SuzukiMasatoshiAbs.pdf
ゼータ関数と微分方程式
Zeta Functions and Differential Equations
鈴木 正俊 東京工業大学理学院,2019 年 2 月

まず慣習に従って, 先の ?ζ(s) に極を消す因子 s(s - 1) を乗じたのち, s = 1/2 - iz と変数変換した函数を
Ξ(z) と書く. これは整函数かつ偶関数である. このとき, リーマン予想は Ξ(z) の零点がみな実であるという
主張に言い換えられる. 無限個の零点をもち, それらがみな実数であるような整函数の例として, 最も単純なも
のは余弦函数や正弦函数であろう. そこで, Ξ(z) がある整函数 E(z) によって余弦函数のように
Ξ(z) = 1/2(E(z) + E(-z))   (1)
と表示されたと仮定してみる. すると Ξ(z) の零点がみな実数になるような E(z) の十分条件の一つとして
『虚部が正である任意の複素数 z に対して, |E(-z)| ? |E(z)| が成り立つ』   (2)
という条件を挙げることができる. 余弦函数の場合 E(z) = exp(-iz) に対して等式 (1) と条件 (2) が成り立っ
ている. 実は等式 (1) と条件 (2) の双方を満たすような整函数 E(z) の存在はリーマン予想の必要十分条件で
あり, そのような E(z) の一つとして Ξ(z) + i Ξ′(z) がとれる [La].
この意味で, Ξ(z) は余弦函数の類似とみなせる.

この事実を踏まえると, Ξ(z) に対応する H(t) が具体的にどんなものであるかに興味が持たれるが, 正準系
の一般論から分かるのは H(t) の存在のみで, その具体形などについてはほとんど何も分からない. こういっ
た理由から, 講演者は H(t) の具体的な構成法について興味をもち, 研究を進めた結果として, 与えられたゼー
タ函数から明示的に定まる行列や積分作用素を用いて H(t) の表示を与える手法を [Su1, Su2] で述べた. 講演
ではその構成の概要を述べたうえ, 関連する問題などについてもお話したい.

つづく