【定理】pが奇素数ならば、x^p+y^p=z^pは、自然数解を持たない。
【証明】x^p+y^p=z^p…(1)を、z=x+rとおいて、x^p+y^p=(x+r)^p…(2)とする。
(2)を変形して、(x/r)^p+(y/r)^p=(x/r+1)^p, (y/r)^p-1=p{(x/r)^(p-1)+…+x/r},
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(3)とする。
(3)はr^(p-1)=pとなるので、r=p^{1/(p-1)}となる。(2)はx^p+y^p=(x+p^{1/(p-1)})^p…(4)となる。
(4)はrが無理数なので、xを有理数としたとき、x,y,zは整数比とならない。
(4)のx,y,zが無理数x',y',z'で、整数比となる場合を考える。dを共通の無理数とする。
(x'/d)^p+(y'/d)^p=(x'/d+r/d)^pとなる。x'/d=x,y'/d=yとなるので、x^p+y^p=(x+r/d)^pとなる。
r/dが無理数の場合は、整数比とならない。
(3)の右辺に、a(1/a)を掛けるとr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(5)となる。
r^(p-1)=p以外の場合は、r^(p-1)=apとなる。r=(ap)^{1/(p-1)}となるのでrは有理数となる。
(2)はX^p+Y^p=(X+(ap)^{1/(p-1)})^p…(6)となる。r/dが有理数の場合も、(6)となる。
(6)のX,Y,Zは(4)のx,y,zのa^{1/(p-1)}倍となるので、X:Y:Z=x:y:zとなる。よって、(6)も整数比とならない。
(6),(4)は、整数比とならないので、有理数解を持たない。
∴pが奇素数ならば、x^p+y^p=z^pは、自然数解を持たない。