X



トップページ数学
1002コメント1160KB
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
■ このスレッドは過去ログ倉庫に格納されています
0001現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/15(金) 07:16:43.30ID:CbUaYdGK
この伝統あるガロアすれは、皆さまのご尽力で、
過去、数学板での勢いランキングで、常に上位です。

このスレは、現代数学のもとになった物理・工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで宜しければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^
最近、AIと数学の関係が気になって、その関係の記事を集めています〜(^^
いま、大学数学科卒でコンピュータサイエンスもできる人が、求められていると思うんですよね。

スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。
話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。

スレ46から始まった、病的関数のリプシッツ連続の話は、なかなか面白かったです。
興味のある方は、過去ログを(^^

なお、
小学レベルとバカプロ固定お断り
例:サイコパスのピエロ=数学おサル(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」。知能が低下してサルになっています)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
(なお、サイコの発言集「実際に人を真っ二つに斬れたら 爽快極まりないだろう」、「狂犬」、「イヌコロ」、「君子豹変」については後述(^^; )
High level people (知能の低い者が、サルと呼ばれるようになり、残りました。w(^^; )
低脳幼稚園児のAAお絵かき
上記は、お断り!!
小学生がいますので、18金(禁)よろしくね!(^^

(旧スレが1000オーバー(又は間近)で、新スレを立てた)
0185現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 07:59:47.92ID:QdpmOFrx
Inter-universal geometry と ABC予想 42
https://rio2016.5ch.net/test/read.cgi/math/1572150086/449-
449 名前:132人目の素数さん[sage] 投稿日:2019/11/26(火) 06:18:49.75 ID:LyHP70fx [1/3]
(抜粋)
ただ、コア的記述による入れ子構造、
(引用終り)

”入れ子構造”は、下記の”お話”だと思うが
普通、”再帰”(下記)というのでは?

http://www.kurims.kyoto-u.ac.jp/~motizuki/research-japanese.html
望月新一 過去と現在の研究
http://www.kurims.kyoto-u.ac.jp/~motizuki/sokkuri-hausu-link-japanese.pdf
IUTeichって何?
「そっくりアニメ」
による解説
(抜粋)
「IUTeich」(=宇宙際 Teichm¨uller 理論)の出発点は、
入れ子になっている宇宙の列
というイメージにある。このようなイメージは、古代に遡るものと思われ、本稿で取
り上げる「そっくりハウス」のアニメをはじめ、世界各地の様々な物語・神話に登場
するものである。IUTeich の場合、それぞれの宇宙は、
「通常の環論・スキーム論が有効な古典的数論幾何的舞台一式」
に対応する。

https://ja.wikipedia.org/wiki/%E5%86%8D%E5%B8%B0
再帰
(抜粋)
再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。自己相似の記事も参照のこと。

主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳[1]として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。

関連項目
数学
数学的帰納法
再帰理論
帰納的集合
帰納的可算集合
帰納言語
帰納的可算言語
帰納的関数
原始再帰関数
漸化式
高階関数

つづく
0186現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 08:00:10.10ID:QdpmOFrx
>>185
つづき

https://dic.nicovideo.jp/a/%E5%86%8D%E5%B8%B0
ニコニコ大百科
再帰単語
(抜粋)
再帰とは、 ある対象xの定義の中にxが登場するような物を言う。
→ 再帰

数学における再帰
以下のようなフィボナッチ数列の定義は再帰的な定義と言える。

a1 = a2 = 1
an+2 = an+1 + an
再帰的でない定義(一般解)は以下のような形になる。

an = 1/√5 × [ {(1+√5)/2}n - {(1-√5)/2}n ]
この例から分かるように、再帰的定義を用いると、そうでない定義よりも直感的な定義をすることが可能になる場合がある。

再帰的解法
再帰的な手法を使い、問題を解く手順である。有名なものにハノイの塔がある。

つづく
0187現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 08:01:03.09ID:QdpmOFrx
>>186
つづき

なお、関連
http://www.kurims.kyoto-u.ac.jp/~motizuki/Kako%20to%20genzai%20no%20kenkyu.pdf
過去と現在の研究の報告 (2008-03-25 現在) (フォント埋め込み版)

(引用終り)
以上
0188現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 14:41:24.32ID:rRA3+Jnq
>>187

内容引用&補足:これを見ると、IUTの意図がなんとなく程度分かるね
http://www.kurims.kyoto-u.ac.jp/~motizuki/Kako%20to%20genzai%20no%20kenkyu.pdf
過去と現在の研究の報告 (2008-03-25 現在) 

初期の歩み
学位を取得した 1992 年夏から 2000 年夏までの私の研究の主なテーマは次の三つ
に分類することができます:

(a) p 進 Teichm¨uller 理論:(1993 年〜1996 年)
この理論は、複素数体上の双曲的リーマン面に対する Koebe の上半平面に
よる一意化や、そのモジュライに対する Bers の一意化の p 進的な類似と見る
こともでき、また Serre-Tate の通常アーベル多様体に対する標準座標の理論の
双曲曲線版と見ることもできる。詳しくは、
A Theory of Ordinary p-adic Curves

An Introduction to p-adic Teichm¨uller Theory をご参照下さい。 

(b) p 進遠アーベル幾何:(1995 年〜1996 年)
この理論の代表的な定理は、「劣 p 進体」(= p 進局所体上有限生成な体の部
分体)上の相対的な設定において、双曲的曲線への任意の多様体からの非定数
的な射と、それぞれの数論的基本群の間の開外準同型の間に自然な全単射が存
在するというものである。詳しくは、 
The Local Pro-p Anabelian Geometry of Curves
をご参照下さい。

(c) 楕円曲線の Hodge-Arakelov 理論:(1998 年〜2000 年)
この理論の目標は、複素数体や p 進体上で知られている Hodge 理論の類似
を、数体上の楕円曲線に対して Arakelov 理論的な設定で実現することにある。
代表的な定理は、数体上の楕円曲線の普遍拡大上のある種の関数空間と、楕円
曲線の等分点上の関数からなる空間の間の、数体のすべての素点において計量
と(ある誤差を除いて)両立的な全単射を主張するものである。この理論は、
古典的なガウス積分
∫ ∞ ?∞ e?x2 dx = √π
の「離散的スキーム論版」と見ることもできる。詳しくは、 
A Survey of the Hodge-Arakelov Theory of Elliptic Curves I, II
をご参照下さい。

つづく
0189現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 14:41:52.11ID:rRA3+Jnq
>>188
つづき

新たな枠組への道
Hodge-Arakelov 理論では、数論的な Kodaira-Spencer 射が構成されるなど、
ABC 予想との関連性を仄めかすような魅力的な側面があるが、そのまま「ABC 予
想の証明」に応用するには、根本的な障害があり不十分である。このような障害を克
服するためには、
通常の数論幾何のスキーム論的な枠組を超越した枠組
が必要であろうとの直感の下、2000 年夏から 2006 年夏に掛けて、そのような枠組を
構築するためには何が必要か模索し始め、またその枠組の土台となる様々な数学的イ
ンフラの整備に着手した。このような研究活動を支えた基本理念は、次のようなも
のである: 

注目すべき対象は、特定の数論幾何的設定に登場する個々のスキーム等ではな
く、それらのスキームを統制する抽象的な組合せ論的パターンないしはそのパ
ターンを記述した組合せ論的アルゴリズムである。 
このような考え方を基にした幾何のことを、「宇宙際(Inter-universal=IU)幾
何」と呼ぶことにした。念頭においていた現象の最も基本的な例として次の三つが
挙げられる:

・ログ・スキームの幾何におけるモノイド
・遠アーベル幾何における数論的基本群=ガロア圏
・退化な安定曲線の双対グラフ等、抽象的なグラフの構造
この三つの例に出てくる「モノイド」、「ガロア圏」、「グラフ」は、いずれも、「圏」
という概念の特別な場合に当たるものと見ることができる。(例えば、グラフの場合、
グラフ上のパスを考えることによって圏ができる。)従って、IU 幾何の(すべてでは
ないが)重要な側面の一つは、 
「圏の幾何」
で表されるということになる。特に、遠アーベル幾何の場合、この「圏の幾何」に対応するのは、
絶対遠アーベル幾何
(=基礎体の絶対ガロア群を、元々与えられたものとして見做さない設定での遠アーベル幾何)である。 

つづく
0190現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 14:42:12.12ID:rRA3+Jnq
>>189
つづき

この 6 年間(= 2000 年夏〜2006 年夏)の、
「圏の幾何」や絶対遠アーベル幾何
を主テーマとした研究の代表的な例として、次のようなものが挙げられる:
・The geometry of anabelioids (2001 年)
スリム(=任意の開部分群の中心が自明)な副有限群を幾何的な対象として扱い、
その有限次エタール被覆の圏の性質を調べる。特に、p 進体上の双曲曲線の数論的基
本群として生じる副有限群の場合、この圏は、上半平面の幾何を連想させるような
絶対的かつ標準的な「有界性」等、様々な興味深い性質を満たす。
・The absolute anabelian geometry of canonical curves (2001 年)
p 進 Teichm¨uller 理論に登場する標準曲線に対して、p 進体上のものとして初とな
る絶対遠アーベル幾何型の定理を示す。

・Categorical representation of locally noetherian log schemes (2002 年)
スキームやログ・スキームが、その上の有限型の(ログ)スキームの圏から自然
に復元されるという、1960 年代に発見されてもおかしくない基本的な結果を示す。
・Semi-graphs of anabelioids (2004 年)
古典的な「graph of groups」の延長線上にある「semi-graph of anabelioids」に対
して、様々なスキーム論的な「パターン」が忠実に反映されることや、それに関連し
た「遠アーベル幾何風」の結果を証明する。
・A combinatorial version of the Grothendieck conjecture (2004 年)
退化な安定曲線に付随する「semi-graph of anabelioids」を、スキーム論が明示的
に登場しない、抽象的な組合せ論的枠組で取り上げ、様々な「遠アーベル幾何風」の
「復元定理」を示す。
・Conformal and quasiconformal categorical representation of hyperbolic
Riemann surfaces (2004 年)
双曲的リーマン面の幾何を二通りのアプローチで圏論的に記述する。そのうちの
一つは、上半平面による一意化を出発点としたもので、もう一つは、リーマン面上の
「長方形」(=等角構造に対応)や「平行四辺形」(=疑等角構造に対応)によるもの
である。

つづく
0191現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 14:42:31.65ID:rRA3+Jnq
>>190
つづき

・Absolute anabelian cuspidalizations of proper hyperbolic curves (2005年)
固有な双曲曲線の数論的基本群から、その開部分スキームの数論的基本群を復元
する理論を展開する。この理論を、有限体や p 進体上の絶対遠アーベル幾何に応用
することによって、様々な未解決予想を解く。
・The geometry of Frobenioids I, II (2005 年)
ガロア圏のような「´etale 系」圏構造と、(ログ・スキームの理論に出てくる)モ
ノイドのような「Frobenius 系」圏論的構造が、どのように作用しあい、またどの
ように類別できるかを研究する。
数体に対する Teichm¨uller 理論
2006 年の後半から、目指すべき理論の形がようやく固まってきて、その理論を記
述するための執筆活動が本格的に始まった。この理論の「形」とは、一言で言うと、
巾零通常固有束付きの正標数の双曲曲線に対して展開する p 進 Teichm¨uller 理
論と、「パターン的に」類似的な理論を、一点抜き楕円曲線付きの数体に対し
て展開する 
という内容のものである。因みに、ここに出てくる(数体上の)「一点抜き楕円曲線」
の中に、その楕円曲線の上に展開される Hodge-Arakelov 理論が含まれている。こ
の理論のことを、「IU Teichm¨uller 理論」(=「IU Teich」)と呼ぶことにした。

IUTeich の方は、本質的にスキーム論の枠組の外(=「IU 的な枠組」)で定式化される
理論であるにも関わらず、調べれば調べるほど p 進 Teichm¨uller 理論(=「pTeich」)
との構造的、「パターン的」類似性が、意外と細かいところまで及ぶものであること
に幾度となく感動を覚えたものである。  

つづく
0192現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 14:43:37.31ID:rRA3+Jnq
>>191
つづき

2006 年〜2008 年春の「IUTeich の準備」関連の論文は次の四篇である:
・The ´etale theta function and its Frobenioid-theoretic manifestations
(2006 年)
p 進局所体上の退化する楕円曲線(= Tate curve)のある被覆の上に存在するテー
タ関数に付随する Kummer 類をエタール・テータ関数と呼ぶ。このエタール・テー
タ関数や、テータ自明化に付随する Kummer 理論的な対象は、様々な興味深い絶対
遠アーベル的な性質や剛性性質を満たしている。これらの性質の一部は Frobenioid
の理論との関連で初めて意義を持つものになる。また、このエタール・テータ関数
は、IUTeich では、pTeich における標準的 Frobenius 持ち上げに対応する対象を定
める予定である。この Frobenius 持ち上げの類似物を微分することによって ABC 予
想の不等式が従うと期待している。このようにして不等式を出す議論は、 
「正標数の完全体の Witt 環上の固有で滑らかな種数 g 曲線の上に Frobenius 持
ち上げが定義されていると仮定すると、その持ち上げを微分して微分層の次数
を計算することにより、
不等式
g ? 1
が従う」
という古典的な議論の IU 版とも言える。

・Topics in absolute anabelian geometry I: generalities (2008 年)
このシリーズ(= I,II,III)の主テーマは、絶対遠アーベル幾何を、「Grothendieck
予想型の充満忠実性」を目標とした視点ではなく、「群論的なアルゴリズム=ソフト」
の開発に軸足を置いた視点で研究するというものである。この第一論文では、様々な
準備的な考察を行う。代表的な定理では、玉川安騎男氏に伝え聞いた未出版の結果か
ら、(半)絶対 p 進遠アーベル幾何では初となる Grothendieck 予想型の「Hom 版」
を導く。因みに、この定理は IUTeich とは直接関係のない結果である。

つづく
0193現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 14:44:10.95ID:rRA3+Jnq
>>192
つづき

・Topics in absolute anabelian geometry II: decomposition groups
(2008 年)
IUTeich のための準備的な考察とともに、IUTeich とは論理的に直接関係のない
配置空間の絶対遠アーベル幾何や、点の分解群から基礎体の加法構造を絶対 p 進遠
アーベル幾何的な設定で復元する理論を展開する。ただ、後者の p 進的な理論では、
上述の「Frobenius 持ち上げの微分から不等式を出す」議論を用いており、哲学的
には IUTeich と関係する側面がある。

・Topics in absolute anabelian geometry III: global reconstruction
algorithms (2008 年)
「Grothendieck 予想型の充満忠実性」を目標とする「双遠アーベル幾何」(= bianabelian geometry)と一線を画した「単遠アーベル幾何」(= mono-anabelian geometry)を数体上の大域的な設定で展開する。これは正に
IUTeich で用いる予定の遠アーベル幾何
である。この理論の内容や「IUTeich 構想」との関連性については、論文の Introduction をご参照下さい。
ここで興味深い事実を思い出しておきたい。そもそも Grothendieck が有名な
「Faltings への手紙」等で「遠アーベル哲学」を提唱した重要な動機の一つは正に diophantus幾何への応用の可能性にあったらしい。
つまり、遠アーベル幾何が(ABC 予想
への応用が期待される)IUTeich で中心的な役割を果たすことは、一見して Grothendieck の直感にそぐった展開に見受けられる。一方、もう少し「解像度を上げて」状
況を検証すると、それほど単純な関係にあるわけではないことが分かる。例えば、
Grothendieck が想定していた応用の仕方では、数体上の「セクション予想」によっ
て数体上の有理点の列の極限を扱うことが可能になるという観察が議論の要となる。
これとは対照的に、「IUTeich 構想」では、(数体上のセクション予想ではなく)
数体と p 進体の両方に対して両立的に成立する(絶対遠アーベル幾何の一種で
ある)単遠アーベル的アルゴリズムが主役を演じる予定である。

つづく
0194現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 14:44:33.83ID:rRA3+Jnq
>>193

つづき

この「単遠アーベル的アルゴリズム」は、pTeich における MF∇-object
の Frobenius 不変量に対応するものであり、即ち p 進の理論における
Witt 環の Teichm¨uller 代表元や pTeich の標準曲線
の「IU 的類似物」と見ることができる。別の言い方をすれば、この「単遠アーベル的
アルゴリズム」は、一種の標準的持ち上げ・分裂を定義しているものである。また、(単
遠アーベル的な)「ガロア系」の対象が p 進の理論における crystal(= MF∇-object
の下部 crystal)に対応しているという状況には、Hodge-Arakelov 理論における「数
論的 Kodaira-Spencer 射」(=ガロア群の作用による)を連想させるものがある。  
2008 年 4 月から IUTeich 理論の「本体」の執筆に取り掛かる予定である。この作
業は、ごく大雑把に言うと、次の三つの理論を貼り合わせることを主体としたもの
である:
・The geometry of Frobenioids I, II
・The ´etale theta function and its Frobenioid-theoretic manifestations
・Topics in absolute anabelian geometry III
因みに、2000 年夏まで研究していたスキーム論的な Hodge-Arakelov 理論がガウス
積分
∫ ∞ ?∞ e?x2dx = √π
の「離散的スキーム論版」だとすると、IUTeich は、
このガウス積分の「大域的ガロア理論版ないしは IU 版」
と見ることができ、また古典的なガウス積分の計算に出てくる「直交座標」と「極座
標」の間の座標変換は、(IU 版では)ちょうど「The geometry of Frobenioids I, II」
で研究した「Frobenius 系構造」と「´etale 系構造」の間の「比較理論」に対応して
いると見ることができる。この「本体」の理論は、現在のところ二篇の論文に分けて
書く予定である。 

つづく
0195現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 14:44:59.46ID:rRA3+Jnq
>>194

つづき

・Inter-universal Teichm¨uller theory I: Hodge-Arakelov-theoretic aspects
(2009 年に完成(?)予定)
p 進 Teichm¨uller 理論における曲線や Frobenius の、「mod pn」までの標準持ち上
げに対応する IU 版を構成する。
・Inter-universal Teichm¨uller theory II: limits and bounds (2010 年に完
成(?)予定)
上記の「mod pn」までの変形の n を動かし、p 進的極限に対応する「IU 的な極
限」 を構成し、pTeich における Frobenius 持ち上げの微分に対応するものを計算
する。
(引用終り)
以上
0197現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 23:10:56.96ID:QdpmOFrx
>>196
おめでとうございます
凄いですね(^^
0198現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 23:48:43.22ID:QdpmOFrx
メモ貼る
https://www.youtube.com/watch?v=Rz5g-plyuAg
Peter Scholze - The geometric Satake equivalence in mixed characteristic
7,685 回視聴?2017/04/13

Institut des Hautes Etudes Scientifiques (IHES)
チャンネル登録者数 2.91万人
Seminaire Paris Pekin Tokyo / MArdi 11 avril 2017

In order to apply V. Lafforgue's ideas to the study of representations of p-adic groups, one needs a version of the geometric Satake equivalence in that setting.
For the affine Grassmannian defined using the Witt vectors, this has been proven by Zhu.
However, one actually needs a version for the affine Grassmannian defined using Fontaine's ring B_dR, and related results on the Beilinson-Drinfeld Grassmannian over a self-product of Spa Q_p.
These objects exist as diamonds, and in particular one can make sense of the fusion product in this situation; this is a priori surprising, as it entails colliding two distinct points of Spec Z.
The focus of the talk will be on the geometry of the fusion product, and an analogue of the technically crucial ULA (Universally Locally Acyclic) condition that works in this non-algebraic setting.
0199現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 23:52:37.94ID:QdpmOFrx
>>198
>Satake equivalence

Satakeは、下記だろうね
https://ja.wikipedia.org/wiki/%E4%BD%90%E6%AD%A6%E4%B8%80%E9%83%8E
佐武一郎
(抜粋)
佐武 一郎(さたけ いちろう、1927年 - 2014年10月10日)は、日本の数学者。山口県出身。
カリフォルニア大学バークレー校名誉教授。東北大学名誉教授。理学博士。
専門は微分幾何学、代数群。佐武同型(英語版)(Satake isomorphism)、志村多様体の佐武コンパクト化、ディンキン図形の一般化である佐武図形(英語版)(Satake diagram)などで知られる。
著書の『線型代数学』は線型代数学の入門書として有名であり[1]、現在でも広く読まれている。

略歴
1927年 - 山口県に生まれる
1950年 - 東京大学理学部数学科卒業
1959年 - 東京大学 理学博士 論文の題は「The Gauss-Bonnet theorem for 5-manifolds (5多様体についてのガウス-ボネットの定理) 」[2]。
1962〜63年 - 東京大学教授
1963〜68年 - シカゴ大学教授
1968〜83年 - カリフォルニア大学バークレー校教授
1980〜91年 - 東北大学教授
1991〜98年 - 中央大学理工学部数学科教授
0200現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/28(木) 23:58:19.75ID:QdpmOFrx
>>198
>Satake equivalence

下記かな〜?(^^;

”The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).”
”which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).”

https://en.wikipedia.org/wiki/Satake_isomorphism
Satake isomorphism
(抜粋)
Jump to navigationJump to search
In mathematics, the Satake isomorphism, introduced by Ichir? Satake (1963), identifies the Hecke algebra of a reductive group over a local field with a ring of invariants of the Weyl group.
The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).

Statement
Classical Satake isomorphism Let {\displaystyle G}G be a semisimple algebraic group, {\displaystyle K}K be a non-Archimedean local field and {\displaystyle O}O be its ring of integers. It's easy to see that {\displaystyle Gr=G(K)/G(O)}{\displaystyle Gr=G(K)/G(O)} is grassmannian.

Then, the geometric Satake isomorphism is

{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} }{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} },

which can be obviously simplified to

{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)}{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)},

which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).
0201現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/29(金) 00:19:47.46ID:KnsCfpdu
>>200
>which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).

淡中先生(^^
https://en.wikipedia.org/wiki/Tannakian_formalism
Tannakian formalism

In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K.
The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K.
A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.

The name is taken from Tannaka?Krein duality, a theory about compact groups G and their representation theory.
The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by Pierre Deligne, and some simplifications made.
The pattern of the theory is that of Grothendieck's Galois theory, which is a theory about finite permutation representations of groups G which are profinite groups.

Contents
1 Formal definition
2 Applications
3 Extensions

つづく
0202現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/29(金) 00:20:19.92ID:KnsCfpdu
>>201
つづき

Applications

The Geometric Satake equivalence establishes an equivalence between representations of the Langlands dual group {}^{L}G} of a reductive group G and certain equivariant perverse sheaves on the affine Grassmannian associated to G.
This equivalence provides a non-combinatorial construction of the Langlands dual group. It is proved by showing that the mentioned category of perverse sheaves is a Tannakian category and identifying its Tannaka dual group with {}^{L}G}.

Extensions
Wedhorn (2004) has established partial Tannaka duality results in the situation where the category is R-linear, where R is no longer a field (as in classical Tannakian duality),
but certain valuation rings. Duong & Hai (2017) showed a Tannaka duality result if R is a Dedekind ring.

Iwanari (2014) has initiated the study of Tannaka duality in the context of infinity-categories.
0203現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/29(金) 00:29:29.74ID:KnsCfpdu
>>202
>Iwanari (2014) has initiated the study of Tannaka duality in the context of infinity-categories.

岩成 勇 先生、東北大だけど、
”2009年度: 京大, 数理解析研究所, 研究員”とあるから、京大出身かも

References
https://arxiv.org/abs/1409.3321
Iwanari, Isamu (2014), Tannaka duality and stable infinity-categories, arXiv:1409.3321, doi:10.1112/topo.12057
Comments: The final version. Published in Journal of Topology, Wiley 2018

https://nrid.nii.ac.jp/nrid/1000070532547/
岩成 勇 Iwanari Isamu

所属 (過去の研究課題情報に基づく) *注記 2018年度 ? 2019年度: 東北大学, 理学研究科, 准教授
2017年度: 東北大学, 理学(系)研究科(研究院), 准教授
2016年度: 東北大学, 理学研究科, 准教授
2012年度 ? 2015年度: 東北大学, 理学(系)研究科(研究院), 准教授
2012年度: 東北大学, 大学院・理学研究科, 准教授
2011年度: 東北大学, 大学院・理学研究科, 助教
2009年度: 京大, 数理解析研究所, 研究員

https://sites.google.com/site/isamuiwanarishomepage/
Isamu Iwanari's Home Page
0204現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2019/11/29(金) 00:33:22.40ID:KnsCfpdu
>>201

https://ja.wikipedia.org/wiki/%E6%B7%A1%E4%B8%AD%E5%BF%A0%E9%83%8E
淡中忠郎
(抜粋)
淡中 忠郎 (たんなか ただお、1908年12月27日 - 1986年10月25日 )は日本の数学者。専門は代数学。

愛媛県生まれ。1945年東北帝国大学教授、後に東北学院大学教授を務めた。ポントリャーギン双対性をコンパクト群へ拡張した淡中-クラインの双対定理で著名。

この定理はグロタンディークによる淡中圏の概念へと発展した。

東京出版の月刊誌『大学への数学』で、「数学雑談」という連載記事の執筆を1960年(昭和35年)から[1]晩年まで担当していた。

https://kotobank.jp/word/%E6%B7%A1%E4%B8%AD%20%E5%BF%A0%E9%83%8E-1649544
淡中 忠郎(読み)タンナカ タダオ コトバンク
(抜粋)
生年明治41(1908)年12月27日
没年昭和61(1986)年10月25日
出生地愛媛県松山市
学歴〔年〕東北帝国大学理学部数学科〔昭和7年〕卒
学位〔年〕理学博士(東北帝国大学)〔昭和16年〕
主な受賞名〔年〕勲三等旭日中綬章〔昭和55年〕
経歴昭和7年第二高等学校講師、9年東北帝国大学講師、17年同助教授、20年同教授、30年米国プリンストン高級研究所員、47年東北学院大学教授、55年CAP予備校校長を歴任。著書に「双対定理」「位相群論」。
出典 日外アソシエーツ「20世紀日本人名事典」(2004年刊)20世紀日本人名事典について
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況