>>178

つづき

Arakelov theory was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by Gerd Faltings (1991) in his proof of Serge Lang's generalization of the Mordell conjecture.

Pierre Deligne (1987) developed a more general framework to define the intersection pairing defined on an arithmetic surface over the spectrum of a ring of integers by Arakelov.

Arakelov's theory was generalized by Henri Gillet and Christophe Soule to higher dimensions. That is, Gillet and Soule defined an intersection pairing on an arithmetic variety.
One of the main results of Gillet and Soule is the arithmetic Riemann?Roch theorem of Gillet & Soule (1992), an extension of the Grothendieck?Riemann?Roch theorem to arithmetic varieties.
For this one defines arithmetic Chow groups CHp(X) of an arithmetic variety X, and defines Chern classes for Hermitian vector bundles over X taking values in the arithmetic Chow groups.

Arakelov's intersection theory for arithmetic surfaces was developed further by Jean-Benoit Bost (1999).
The theory of Bost is based on the use of Green functions which, up to logarithmic singularities, belong to the Sobolev space {\displaystyle L_{1}^{2}}{\displaystyle L_{1}^{2}}.
In this context Bost obtains an arithmetic Hodge index theorem and uses this to obtain Lefschetz theorems for arithmetic surfaces.
(引用終り)