a≧2,a≧b≧1なるすべての互いに素な整数の順序対[a,b]に対して
(1) p≡b (mod a)
をみたす素数pが少なくとも1つ存在する
(2) p≡b (mod a) かつ p>b
をみたす素数pが少なくとも1つ存在する
(3) p≡b (mod a) 
をみたす素数pは無限に存在する。

が成立することは同値。

(1)⇒(2)の証明
(k,a+b)=1なる整数kを十分大きく(a+b<kaをみたすように)取ると((ka,a+b)=1でもあるから)(1)より
p≡a+b (mod ka)
をみたす素数pが存在するが、pは条件をみたしている。

(2)⇒(3)の証明
p≡b (mod a)かつp>b をみたす素数全体の集合をSとおくと(2)よりSは少なくとも1つの素数を含む。
Sを有限集合として矛盾を導く。Π_{p∈S}p=Πとおくと(2)より
q≡b (mod aΠ), q>b
をみたす素数qが少なくとも1つ存在するが、qはq≡b (mod a),q>b,Sに属するどの素数でも割れない
をすべてみたすことになり矛盾する。